K-theory of one-dimensional rings via pro-excision
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Abstract

This paper studies ‘pro-excision’ for the K-theory of one-dimensional, usually semi-local,
rings and its various applications. In particular, we prove Geller’s conjecture for equal charac-
teristic rings over a perfect field of finite characteristic, give results towards Geller’s conjecture
in mixed characteristic, and we establish various finiteness results for the K-groups of singu-
larities, covering both orders in number fields and singular curves over finite fields.
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INTRODUCTION

In the first section of this paper we will show that if A is a one-dimensional, Noetherian, reduced,
semi-local ring for which the normalisation morphism A — A is finite, then there is a long exact,
Mayer—Vietoris, ‘pro-excision’ sequence of pro abelian groups

s = K (A) = “lim” Ky (A/m") @ K (A) = “lim” K, (A/97) — -+, (pro-MV)

where m, 9 denote the Jacobson radicals of A, A respectively. There is also a similar sequence for
the relative K-groups. Here “l'm”r denotes a pro abelian group, i.e. a formal inverse system of
groups, sometimes denoted, e.g., {K,,(4/m")},.

Before discussing the main results of this paper, we explain the source of (pro-MV). It has been
known at least since work by R. Swan [57, Thm. 3.1] that K-theory fails to satisfy excision; i.e.,
if A — B is a morphism of rings and I is an ideal of A mapped isomorphically to an ideal of B,
then K, (A,I) — K,(B,I) need not be an isomorphism. Having fixed I as a non-unital algebra,
A. Suslin [54] showed, by building on earlier work of himself and M. Wodzicki [55], that I satisfies
excision for all such morphisms A — B if and only if I is homologically unital, in Wodzicki’s sense
that Torf I (Z,7) = 0 for x > 0. Unfortunately, this is not commonly satisfied for rings of algebraic
geometry. A recent trend has therefore been to consider instead the problem of ‘pro-excision’: i.e.,
When is the map l'gl”r K,(AI") — ¢ im”T K, (B,I") an isomorphism? For example, if A is a
Noetherian Q-algebra then these maps are isomorphisms by a recent theorem of the author [40,
Thm. 0.1]. Moreover, T. Geisser and L. Hesselholt [14, 15] have established a pro version of the
Suslin—Wodzicki condition. In section 1 we use Geisser—Hesselholt’s results to show that if I is the
conductor ideal of a one-dimensional, Noetherian, reduced ring for which the normalisation map
is finite, then it satisfies pro-excision, thereby resulting in long exact, Mayer—Vietoris, pro-excision
sequences such as (pro-MV) above.
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Such sequences have immediate global applications: If X is a proper, reduced curve over a
finite field, then pro-excision implies that K,(X) — K,(X) has finite kernel and cokernel for
n > 1, whence K,,(X) is finite by G. Harder [21] and C. Soulé [50]. In other words, Harder—Soulé’s
finiteness result extends to singular curves. The arithmetic analogue, which also follows from pro-
exicision, is that if A C Op is an order in the ring of integers of a number field F, then K, (A)
is finitely generated and of the same rank as K,(Op); these ranks are of course known thanks to
A. Borel [4]. The proofs of these results are postponed until section 3.1 with the other material
on rings with finite residue fields.

However, the major theme of this paper is of a local nature, showing that such pro-excision
sequences often break into short exact sequences and studying the many interesting consequences,
especially to Geller’s conjecture in the finite residue characteristic case. In particular, sections
2.1 — 2.3 are devoted to the proof of the following key theorem, which can be interpreted as an
analogue for singular rings of the Gersten conjecture:

Theorem 0.1. Let A be a one-dimensional, Noetherian, reduced semi-local ring containing a field
such that A — A is a finite morphism; let m and 90 denote the Jacobson radicals of A and A. Then
the relative version of (pro-MV) breaks into short exact sequences of pro abelian groups, yielding

0 = Kn(A,m) = “lim” K, (A/m", m/m") & K, (4,9) = “lim” K,,(A/M", /M) = 0

for alln > 0. Ifﬁ — ;1/9)? splits (e.g., A complete), then the non-relative sequence (pro-MV) also
splits into short exact sequences:

0= Kn(A) = “lim” K, (A/m") & K, (A) = “lim” K, (A/9M") = 0.
T T

The special case of the theorem when A is essentially of finite type over a field of characteristic
zero and n = 2 was proved by A. Krishna [32, Thm. 3.6]; the n = 2 assumption was removed in
the author’s earlier work [41] on this subject, but the characteristic and finite type assumptions
remained. Therefore the theorem extends the results in [41] on K-theoretic adeéles to all one-
dimensional, Noetherian, reduced schemes over a field for which the normalisation map is finite.
I suspect that the theorem is true without the equal characteristic assumption; section 3.2 gives
partial results in mixed characteristic.

Informally, the theorem states that the contributions to the K-theory of A coming from its
singularities can be entirely captured using the K-theory of the quotients A/m", for r > 0. For
example, we use the theorem to prove the following in section 2.4, where K H denotes C. Weibel’s
homotopy invariant K-theory:

Theorem 0.2. Let A be as in theorem 0.1, and assume that A — A/m splits. Then, for each
n >0, the kernel of K, (A) = KH,(A) embeds into K,,(A/m") for r > 0.

Moreover, precisely because (pro-MV) and the first theorem describe the singular contribution
to the K-groups, they have important applications to Geller’s conjecture, which we interpret as
the following, although this is not exactly what S. Geller asked in 1986 [17]:

“Let A be a one-dimensional, Noetherian, reduced local ring, and suppose that K2(A) —
K5 (F) is injective, where F' = Frac A is the total quotient ring of A. Then A is neces-
sarily regular.”

Apart from the seminormal, equal characteristic case, there has been no progress until now on the
conjecture when A has finite residue characteristic. We prove the following in section 2.5:
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Theorem 0.3. Geller’s conjecture is true if A is an Fp-algebra with perfect residue field for which
A — A is a finite morphism.

Meanwhile, in section 2.6 we offer the following interesting alternative to Geller’s conjecture in
characteristic zero:

Theorem 0.4. If A is as in Geller’s conjecture, is essentially of finite type over a characteristic
zero field, and is not regular, then K, (A) — K, (F) is not injective for some n > 3.

Next we turn our attention to mixed characteristic rings; section 3.2 analyses consequences of
the sequence (pro-MV) for reduced Z,-algebras which are finitely generated and torsion-free as
Zy-modules, e.g. Z, + pZq. 1f A is such a ring then A is a finite product of rings of integers of
local fields, whose K-groups are largely understood thanks to L. Hesselholt and I. Madsen’s proof
of the Quillen—Lichtenbaum conjecture [26, Thm. A]. In particular, this implies that the following
theorem holds for rings of integers of local fields; extending it to A relies on the observation that
pro-excision implies that K, (A) — K, (A) has finite kernel and cokernel for n > 1.

Theorem 0.5. Let A be a reduced Zp-algebra which is finitely generated and torsion-free as a
Zy-module. Then

Ko(A) = divisible Zp)-module & finite p-group — n > 2 even,
" torsion-free Zyy-module @ finite group n > 1 odd,

It follows from group theory that the groups appearing in these direct sum decompositions
are determined, up to isomorphism, by K, (A). For example, if n is even then the finite p-group
appearing in the theorem is necessarily the quotient of K, (A) by its maximal divisible subgroup;
in fact, if n is even then the standard short exact sequence

0 — Ext}(Q/Z, K,(A)) — K, (A;Z) — Homz(Q/Z, K,,_1(A)) = 0

implies, in conjunction with the previous theorem, that the finite p-group is precisely the K-group
with Z coefficients K,,(A;Z). A similar structural description of K, (A;Z) when n is odd is also
given in corollary 3.15, and these results are used to prove the analogue of theorem 0.1 in odd
degrees for A. In even degree we can reduce the problem to understanding the torsion in the even
degree K-groups; this is well understood for K5, but not in general, resulting in the following:

Theorem 0.6. Let A be a reduced Zy-algebra which is finitely generated and torsion-free as a
Zy-module. Then K3(A;Z) equals the finite p-group alluded to in theorem 0.5 (and similarly for
A), and there is a short exact, Mayer—Vietoris sequence

0 — Ky(A) = Ky(A; Z) & Ky(A) — Ky(A:;Z) = 0

Finally, using similar methods as in our proof of Geller’s conjecture in equal finite character-
istic, this theorem yields the first results towards Geller’s conjecture in mixed characteristic. Our
methods do not see the element p, so rather than establishing regularity under the conditions of
the conjecture, we instead bound the embedding dimension of A by 2:

Theorem 0.7. Let A be a one-dimensional, Noetherian, reduced local Ting of mived characteristic
with finite residue field of characteristic p > 2, and such that A — A is finite. Suppose that at
least one of the following is true:
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(i) Frac A contains no non-trivial p-power Toots of unity; or
(ii) A is seminormal, and A is not a certain exceptional case (see theorem 3.21 for details); or

(i) A is local and all p-power roots of unity in Frac A belong to A.
If the map Ko(A) — Ky (Frac A) is injective then embdim A < 2.

In the remainder of this introduction we describe our methods and the ingredients of the proofs
of the above results, beginning with theorem 0.1. It is sufficient, using the relative version of
(pro-MV), to show that

K (A, 90) — “lim” K,,(A/2", 90/M")

is surjective for all n > 1. Thus it is enough to show that the codomain is entirely symbolic and so,
since A/9M" is a finite product of truncated polynomial rings, this reduces the theorem to proving
that

Y K, (k[E)/ (), (1)

is entirely symbolic for any field k. When k has characteristic zero this is proved directly in section
2.2 by filtration arguments in cyclic homology after applying the following case of the Goodwillie
isomorphism [19]: K, (k[t]/(t"), (t)) = HCZ | (k[t]/(t"), (t)). The proof is philosophically similar
in finite characteristic, in that we apply Hesselholt and Madsen’s [25, 22] description of the K-
theory of truncated polynomial rings in finite characteristic using topological cyclic homology via
the McCarthy isomorphism [37].

Sections 2.4 — 2.6 cover the applications of (pro-MV) and the first main theorem; they may be
read independently:

Firstly, theorem 0.2 follows in a straightforward way from theorem 0.1 by relating the K H-
theory of A with the K-theory of A.

Next, (pro-MV) reduces theorem 0.3 to checking that

“ @’7 I('2(-14/1,‘1T7 m/mT) _) “ @” K2(g/9:)’tT7 m/m"‘)

is injective if and only if A is regular. It can be shown using perfectness of the residue field
that the codomain of this map vanishes, so it becomes enough to construct a non-zero element
of K3(A/m", m/m") for some r under the assumption that A is singular; this is easily achieved
using Dennis—Stein symbols. We emphasise that the key to the proof is that (pro-MV) reduces
the problem to the K-theory of the quotients A/m” and A/9M". Krishna [32] studied Geller’s
conjecture in a similar way in characteristic zero, introducing an ‘Artinian Geller’s Conjecture’
which mimicked G. Cortifias, S. Geller, and C. Weibel’s [8] Artinian analogue of Berger’s conjecture
on the torsion in differential forms of curve singularities.

Finally, theorem 0.4 is proved by establishing an intermediate result which is of interest in its
own right: The maps

Ko (A,m) — K, (A,M), HC,_1(A,m) = HC,,_1(A, M)

have isomorphic kernels (and cokernels). This is proved by establishing an analogue of theorem 0.1
for cyclic homology and then appealing to the Goodwillie isomorphism. For example, the resulting
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isomorphism of the kernels is uniquely determined by the commutativity of the diagram

Ker(K,(A,m) = K,(A,M)) —= Ker(HC,_1(A,m) — HC,,_1(A,M))

v 1

K, (A,m) HC,—1(A,m)

! i

“ @’77_ Kn(A/mr, m/mr) “ I‘anvr ch_l(A/mr7m/mr)

where the bottom arrow is the Goodwillie isomorphism; the isomorphism of the cokernels is de-
termined in a similar way. These isomorphisms reduce theorem 0.4 to the same claim for cyclic
homology, which can be deduced from the ‘Hochschild homology criterion for smoothness’ [2].

Now we say something about our proofs for mixed characteristic rings with finite residue fields.
If A is a reduced Z,-algebra which is finitely generated and torsion-free as a Z,-module, then pro-
excision implies that the kernel and cokernel of K, (A) — K, (A) are finite; this reduces theorem
0.5 to the normal case, where it is known. The weaker mixed characteristic analogue of theorem 0.1
is deduced by explicitly examining the structural description offered by that theorem. We obtain
the strongest result when n = 2, namely theorem 0.6, because the divisible summand of K5(A) is
known to be torsion-free; the lack of this knowledge for the other even degree K-groups is what
prevents us from fully proving theorem 0.1 in the mixed characteristic setting.

Theorem 0.7 can then be proved in a similar way as theorem 0.3: theorem 0.6 reduces Geller’s
conjecture to an Artinian analogue. This can often be directly tackled at the level of Ko(A/m?),
which can be described in a classical style using differential forms and exterior powers of the
cotangent space.
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NOTATION, CONVENTIONS, ETC.

Every ring in this paper is commutative, though we stress that the first two theorems of section
1 remain valid in the associative, non-commutative case. Every ring is moreover unital, with the
strict exception of certain instances in section 1 where we write “non-unital ring”.

Given a reduced ring A, we denote its total quotient ring by Frac A, and its integral closure
in Frac A by A. We often requ1re A to be finitely generated as an A-module, i.e. that A — Ais
finite (the term “Mori ring” is in the literature but we will not use it); this is true if A is excellent
[20, 7.8.3]. A ring is said to be normal if and only if it is reduced and integrally closed in its total
quotient ring, i.e. A = A.

Since most of this paper concerns local rings, Ky is typically uninteresting and therefore we
do not replace K-theory by its non-connective completion; in particular, our long exact Mayer—
Vietoris sequences finish with a possibly non-surjective map between K, terms. However, the
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groups K,, n < 0, always satisfy excision, so there is no loss of generality in only working with
the non-negative K-groups.
Cyclic homology with respect to the base ring Z is denoted HC, = HCZ.

1 PRO-EXCISION IN K-THEORY IN DIMENSION ONE

The aim of this foundational section is to describe pro-excision in algebraic K-theory, prove that
it is satisfied when normalising one-dimensional rings, and state the consequences, namely the
long exact sequences of proposition 1.4 and corollary 1.7. These consequences are essential for the
remainder of the paper.

If T is an ideal of a ring A, then K(A,I) is defined to be the homotopy fibre of the map
K(A) — K(A/I); its homotopy groups K, (A, I) are the relative K-groups associated to A and I,
and they fit into a long exact sequence

= Ky (A ) — Ky (A) = K, (A/T) — -

If f: A — B is a morphism of rings carrying I isomorphically to an ideal of B, then there is
a canonical map K(A,I) — K(B,I), whose homotopy fibre is denoted K (A, B, I); its homotopy
groups are the birelative K -groups, fitting into a long exact sequence

= K,(A,B,I) = K,(A,I) - K,(B,I) = ---

A non-unital ring I is said to satisfy ezcision for K-theory if and only if whenever I is embedded
as an ideal into a unital ring A, and f : A — B satisfies the conditions of the previous paragraph,
then K,(A,I) — K,(B,I) is an isomorphism for all n > 0; equivalently, K,(4, B,I) = 0 for
n > 0. Informally, the groups K, (A, ) depends only on I, not A. Obvious modifications of this
terminology will be used. There is a universal choice of such a ring A, namely A = Zx I, sometimes
denoted [ in the literature.

The following is A. Suslin’s celebrated solution of the excision problem in K-theory, building
on earlier work of M. Wodzicki:

Theorem 1.1 (Suslin [54]). Let I be a non-unital ring, and set C = Z, Q, or Z/mZ for any m € 7Z.
Fiz p > 0. Then I satisfies excision for K,(—,C), for n < p, if and only if Tor>*!(z,C) = 0 for
n=1,...,p.

Suslin—Wodzicki’s criterion is rarely satisfied for ideals I occurring in algebraic geometry: it
is more appropriate for non-unital C*-algebras and other similar function algebras. Of greater
interest to us will be when excision is satisfied as we pass to increasingly fat nilpotent thickenings
of an ideal; the following theorem, which we only state in the integral case, is the necessary pro
extension of Suslin’s result:

Theorem 1.2 (T. Geisser & L. Hesselholt [14, Thm. 1.1] [15, Thm. 3.1)). Let f : A — B be a
morphism of rings, and I C A an ideal mapped isomorphically by f to an ideal to B. Suppose that
the pro abelian group
“lim” Tor2*")(z, 7.)
T

is zero for all m > 0. Then the pro abelian group

“lim” K,,(A,B,I")
% n

is zero for alln > 0, and so “lim” K,(A,I") — “lim” K,(B,I") is an isomorphism; i.e. I
satisfies ‘pro-excision’ in K-theory.
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Remark 1.3. Before continuing we include a brief discussion about pro abelian groups.
Everything we need about categories of pro objects may be found in one of the standard
references, such as the appendix to [1], or [29]. We will use Pro Ab, the category of pro abelian
groups. An object of this category is a contravariant functor X : Z — C, where Z is a small
cofiltered category (in this paper it is fine to assume Z = N); this object is denoted “ @”i X ().

€z
Morphisms are given by the rule

ju—

Hompo 4p(“lim” X, “lim” V') := lim 11_) Hom 44(X (), Y (5)),

€T ISV €T €L

<
<

where the right side is a genuine pro-ind limit in the category of sets, and composition is defined
in the obvious way. For example, a pro abelian group “ @”o L X (r) is isomorphic to zero if and

only if for each r > 1 there exists s > r such that the transition map X (s) — X(r) is zero.
There is a fully faithful embedding Ab — Pro Ab with a right adjoint

Pro Ab— Ab,  “lim” X (i) ~ lim X (i), (1)
i€T i€l

which is left exact but not right exact: its first derived functor is precisely 1'&11. Moreover, Pro A
is an abelian category; given a inverse system of exact sequences

= X1 (8) — X () — X1 () — -,

the limit

NN uyLnn anl(l) — uyLnn Xn(l) — LL@” Xn+1(z) ..

i€l i€l i€l

is an exact sequence in Pro Ab. This does not imply that

= Im X (i) — Jm X, (4) — lim XG44 (6) — - -
i€L €L €L

is exact, since (1) is not an exact functor.

Before introducing methods to check the conditions of the Geisser—Hesselholt theorem, we
collect together the standard consequences which we will use of the vanishing of the pro birelative
K-groups “ 11£1”r K, (A, B,I"):

Proposition 1.4. Let f : A — B be a morphism of rings, and let I C A be an ideal mapped
isomorphically by f to an ideal of B. Suppose that @”r K,(A,B,I") =0 for alln > 0. Then

(i) There is a natural, long exact, Mayer—Vietoris sequence
RN Kn(A) N u@w Kn(A/IT) @Kn(B) N ccr&nw Kn(B/IT) — ..
(it) Suppose that J (resp. J') is an ideal of A (resp. of B) containing I (resp. f(I)). Then there
is a natural, long exact, Mayer—Vietoris sequence of relative K -groups

= Kp (A, J) — “1&1” K,(A/I", J)T") & K, (B,J") = “lim” K,,(B/I", J'JT") — -+
”

r
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(iii) Suppose J 2 I is an ideal of A mapped isomorphically to an ideal of B. For anyn > 0, the
canonical map
K,.(A,B,J) = “lim” K, (A/I",B/I", J/I")

is an isomorphism.

(iv) Suppose J D I is an ideal of A mapped isomorphically to an ideal of B. For any n > 0, the
map K,(A,B,J) = K,(A/I",B/I",J/I") is split injective for r > 0.

Proof. (i)—(iii) follow in a straightforward way by taking the limit over r of exact sequences of
homotopy groups, or using pro spectra. (iv) is a consequence of (iii). O

Remark 1.5. The homotopy groups of holim, K (A, B, I") fit into short exact sequences

0— @1Kn+1(A, B,I") = my(holim K (A, B, I")) = lim K,,(4, B,I") = 0

T T

If I satisfies pro-excision then the two outer terms are zero for all n > 1, and so we deduce that
holim, K (A, B, I") is contractible. Thus

Kn(A) ——— Ka(B)

i |

holim, K, (A/I") — holim, K,,(B/I")

is a homotopy cartesian square of spectra. This leads to variants of the long exact sequences
of the previous proposition in which the pro abelian groups are replaced by homotopy groups of
homotopy limits of spectra; however, it is much easier to work with pro abelian groups throughout.

The rest of this section is dedicated to the proof of the following consequence of the Geisser—
Hesselholt theorem, implying the vanishing of the pro birelative K-groups in a wide variety of
situations, the most important of which (for us) we give in the subsequent corollary. We will say
that an ideal I of a ring D is locally invertible if and only if, for every prime ideal p C D, the ideal
I,, is generated by a single non-zero-divisor of Dy. If D is Noetherian, then I is invertible if and
only if it is locally invertible.

Proposition 1.6. Let f : A — B be a morphism of rings, and I C A an ideal mapped isomor-
phically by f to an ideal to B. Suppose moreover that there exists a ring D with the following two
properties: I is isomorphic, as a non-unital ring, to a locally invertible ideal of D; and D is flat
over Im(Z — D). Then

m” K,(A,B,I") =0

T

for alln > 0.

The following corollary of the proposition will be the case of interest to us. If A is a one-
dimensional, Noetherian, reduced ring such that A — A is finite, then the conductor ideal § :=
Ann A(A/A) is non-zero; it is the largest ideal of A contained inside A, and the quotients A/f and
A/f are Artinian. The radical of f inside A, i.e. the ideal v/f = {be A:brefforr> 0}, is equal

to the intersection of the finitely many maximal ideals 997 of A for which A Anon is not normal.
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Corollary 1.7. Let A be a one-dimensional, Noetherian, reduced ring such that A — A is finite;
let I be a non-zero ideal of B := A contained inside A, e.g. the conductor ideal § = Anny(B/A).
Then
“lim” K,(A,B,I") =0
for all n > 0.
In particular, if J' is an ideal of B contained in the radical (taken inside B) of f, and J := ANJ’,
then there are long exact Mayer—Vietoris sequences

s Ko (A) = “lim” Ky (A/J7) @ Kp(B) = “lim” Ky (B/J'") = -+

r

o K(ALT) = Sl K (A7 J)J7) @ Ko (B,J) = Sl K (B0 ) J7) = -

Proof. To prove the birelative vanishing claim we first reduce to the case where Spec A is connected
and of dimension one. Indeed, the spectrum of A has finitely many components and some of these
may be spectra of fields, since we have not insisted A be equi-dimensional. Therefore we may write
A=A xr,and I = I' x J, where A" is an equi-dimensional, Noetherian, reduced ring, & is a
finite product of fields, and I’ (resp. J) is an ideal of A’ (resp. k). Then B = A’ x  and I’ is an
ideal of E; since K-theory is additive for products of rings, we have

Kn(A, B, I7) 2 K (A AL T @ Ko (ky ke, J7) 22 Ko (A AL TT).

In the same way, if Spec A’ has multiple components then we may treat them individually by writing
A’ = A” x A" and proceeding inductively. This reduces us to the connected, one-dimensional case.

Under this assumption, we will show that the conditions of proposition 1.6 are satisfied with
D = B, from which the first part of the corollary follows. Firstly, B is a finite product of Dedekind
domains in each of which I has non-zero image, and so I is automatically a locally invertible ideal
of B. Secondly, the image of Z inside B is either equal to Z (in which case B is a torsion-free, hence
flat, Z-module), or is equal to a field k since Spec A is connected (in which case B is automatically

flat over k).
For the long exact sequences, take I = J'f and just apply proposition 1.4, noting that the
chains of ideals {I"}, {J"} and {J'"} are cofinal in one another. O

Example 1.8. If A is a one-dimensional, Noetherian, reduced semi-local ring such that A — B :=
A is finite, then we may apply corollary 1.7 to the Jacobson radicals m, 9t of A, B, yielding the
long exact Mayer—Vietoris sequences alluded to in the introduction

o K (A) = “lim” Ky (A/m") & K, (B) — “lm” Ky (B/M") — -+ -

T

= Kp(A,m) — “@” K,(A/m" m/m") ® K,(B,M) — “@” K,(B/9", M/M") — - --
T T

Remark 1.9. Here we explain some issues surrounding the assumed finiteness of the normalisation
morphism A — A. B

Let A be one-dimensional, Noetherian, reduced ring, with normalisation B = A. According
to the Krull-Akizuki theorem [27, Thm. 4.9.2], B is again one-dimensional and Noetherian, hence
is a product of finitely many Dedekind domains. Moreover, if p is a prime ideal of A, then the
prime ideals of B containing p are precisely those finitely many prime ideals occurring in the prime



MATTHEW MORROW

ideal factorisation of pB; so only finitely many prime ideals of B contain p. In particular, if A is
semi-local then so is B.

If A — B is moreover assumed to be a finite morphism, in which case the Krull-Akizuki
theorem is of course unnecessary to deduce that B is Noetherian, then the quotient B/A is a
finitely generated A-module, and so the conductor f = Anny(B/A) is a non-zero ideal of A such
that A/f has finite length. Conversely, if I is an ideal of B contained in A, and we assume that
is not contained inside any minimal prime ideal of B (to avoid the situation that B = B’ x B” and
I =1TI"x{0}), then I contains a non-zero-divisor f of B; hence fB = B is an ideal of A, whence
it is finitely generated as an A-module.

In conclusion, the finiteness of A — B is the minimal condition required to formulate corollary
1.7.

Now we turn to the proof of proposition 1.6. We will check the conditions of the Geisser—
Hesselholt theorem by explicitly calculating the Tor groups in question; this is achieved in a
standard way using bar resolutions, which we now briefly review.

Let k be a ring, D a k-algebra possibly without unit, and let M, N be D-modules (recall
our convention, for simplicity, that all rings are commutative). The associated two-sided bar
construction is the simplicial D-module

BE(N,D,M) = N @y D®j, -+ @ D@ M,
N—————

e times

with the obvious boundary and degeneracy maps. If D is unital then the presence of the “extra
degeneracy” (e.g. [35, Prop. 1.1.2]) implies that 8¥(D, D, M) is a resolution of M; if D and M are
also flat over k, it follows that 35(N, D, M) = N ®@p BF(D, D, M) calculates TorE(N, M).

Suppose now that I is a non-unital, flat k-algebra. Then the normalised chain complex asso-
ciated to B (k, k x I,k), which we have just shown calculates Tor®>? (k, k), can be identified with
the subcomplex 5% (1) := pE*I(k, I, k), where I acts on k as zero. Explicitly, 8%(I) is the complex
of k-modules

s TR T @R I — T @ I -5k — 0

where the k£ sits in degree 0 and the boundary maps are b = Z?;Ol(—l)idi, where
day® - ®ap) =a® - Qa1 Q- ap (i=0,...,n—1).

In light of this discussion, the key to proving proposition 1.6 therefore rests with the following
lemma:

Lemma 1.10. Let k — D be a flat morphism of rings, and I C D a locally invertible ideal of D.
Then the canonical map

H, (Bo(I%)) — H.(BS(I))

is zero for x > 0.

Proof. To illustrate the proof we first suppose that I = tD for some non-zero-divisor t € D. For
each n > 0 define

s BE(I?) = BE (D), tag®- - @ta, = t®tay @ t2a; ® - @ t2ay,
where ag,...,a, € D. Letting f : B¥(I?) — B¥(I) denote the canonical map induced by the

inclusion I% C I, it is clear that dgs = f and d;s = sd;_1 fori =1,...,n. So b's+ sb’ = f, whence
f induces the zero map on homology.

10
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Now we consider the general case; we must reduce to the situation where have a contracting
homotopy by localising enough. First observe that 3% has the structure of a complex of left D-
modules; moreover, for any maximal ideal m of D, the flatness of D — Dy, implies that H +(Dm®p
(1)) = Dy ®p H.(BY(I)). Moreover, IDy, = tD,, for some non-zero-divisor ¢ € I, and we
may further write I Dy, = mseD\m LD. So, for s € D\ m, let N3(I) denote the subcomplex of
Dy ®p B4(I) given by

t
NE(I) = (D) ®r 1%

S

(and similarly N3 (I?), replacing t by t?). Then

Do @p H(BS(D) = lim H.(N3(D))
s€D\m

(and similarly for I?), so we have reduced the problem to proving that the canonical map
FrNS(I?) = N2(T)

induces zero on homology. But this follows similarly to the invertible case, using the contracting
homotopy

t2 t
S:NrsL(Iz)H 7?—}-1([)) §a®bl®®bn*_>;®ta®bl®®bn;

where a € D and by,...,b, € I O
Corollary 1.11. Let k, D, I be as in the previous lemma, and let n > 0. Then

Tor** ™) (k, k) — Tor*™ (k, k)
is zero, and so

“ @” Torflx(ﬂ)(k:, k) =0.

Proof. The first claim is just a statement of the previous lemma, since we had previously shown
H,(B%(I)) = Tor* ! (k,k) (and similarly for I?). The second claim follows by replacing I by
successively higher powers of itself and repeatedly applying the first claim, which remains applicable
since I" is still a locally invertible ideal of D. O

We need one more lemma, for which we refer to Geisser and Hesselholt’s paper for a proof.
In fact, their result is much more general and the proof is based on manipulations of Eilenberg—
Maclane spectra; for our special case, a direct analysis of the Tor groups using spectral sequences
is possible and is due to appear in forthcoming work.

Lemma 1.12. Let”k’ — k be a surjective map of rings, and I a non-unital k-algebra. Suppose
that “1im” Tory*"")(k,k) = 0 for all n > 0. Then “lim” Tory *")(k',k') = 0 for alln > 0.

Proof. [15, Prop. 3.6]. O

Now we may prove that the pro birelative K-groups vanish in situations of interest to us:

11
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Proof of proposition 1.6. By assumption there is a ring D which contains I as a locally invertible
ideal and which is flat over k := Im(Z — D). The previous corollary implies that

« T&n” Torfblx(fr)(k’ k) =0

for all n > 0, and then the previous lemma, with k' = Z, implies “lim” Tor’*"")(Z, Z) = 0 for all
n > 0. Finally we apply the Geisser—Hesselholt theorem from the start of the section to complete
the proof. O

2 APPLICATIONS IN EQUAL CHARACTERISTIC

In this section we apply corollary 1.7 to the study of one-dimensional local rings of equal char-
acteristic. Sections 2.1 and 2.2 contain preliminary lemmas, and we then establish in section 2.3
when the pro-excision, Mayer—Vietoris sequences breaks into short exact sequences. In particular,
we show that the K-theory of a complete, equal charactersitic, one-dimensional local ring is cap-
tured by its generic K-theory and by all thickenings of its closed point (theorem 2.9), an idea also
encapsulated by our application in section 2.4 to homotopy invariant K-theory.

Using pro-excision we prove Geller’s conjecture in the finite characteristic, perfect residue field
case in section 2.5, and then turn to characteristic zero and a relation with cyclic homology in
section 2.6.

Sections 2.4-2.6 are independent of each other.

2.1 FINITE CHARACTERSITIC

We begin with a result in finite characteristic. The following does not seem to be available in
exactly this form anywhere in the literature, but readily follows from deep results on the K-
theory of truncated polynomial algebras by L. Hesselholt and I. Madsen, building on older work
by S. Bloch.

If A is any ring then we write K™ (A) C K,,(A) to denote the symbolic part of the K-group,
i.e. the image of the canonical map from Milnor K-theory to Quillen K-theory; moreover, we write
K3 (A[H]/(#7), (1) = Ker(K3™(A[f] /(7)) — K3™(A)).

Proposition 2.1 (Bloch, Hesselholt—-Madsen). Let A be a regular, Noetherian, local F,-algebra,
and let n > 1. Then the canonical injection

“lim” KoY (AfE]/ (), (8) — “Jm” K (Aft]/(E7), (1))

is an isomorphism.

Proof. For a moment let A be any ring, and let > 1. We denote by W,.(A) the length r big Witt
vectors; this is a commutative, unital ring whose underlying abelian group structure is

1+ tA[t]/1 + T A[L).

Next let W, Q% be the big de Rham Witt complex (e.g., [25]); it is a differential graded algebra
over W,.(A), equipped with a canonical surjection

Q%;VT(A) — WTQZ

12
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of dg algebras, which is an isomorphism when * = 0.

Now let A be a regular, Noetherian Fp-algebra. In [25, Thm. A], Hesselholt and Madsen deter-
mined the K-theory of truncated polynomial algebras over A using R. McCarthy’s [37] comparison
theorem between relative K-groups and topological cyclic homology: their primary result takes
the form of a long exact sequence

s Wi O WL QLT S K (A (1), (1) — -+

i>1 i>1

where V.. : W; Q% — W;,.Q2% denotes the Verschiebung map and we will describe a special case of
¢ below. To be precise, the result in [25] is stated only when A is smooth over a perfect field of
characteristic p, but it was observed in later work that it extended to the more general regular
case using Neron—Popescu desingularisation [44, 45].

The behaviour of this complex with r was later given in [22, Thm. A]: given s > r, there is a
morphism of complexes

D @iy W —— @ Wi —— Ka(Af/(1), (1) —— -

| | |

o @ingiQTl_% — EBile’iT"QZ\+1_2i — K, (A[t]/(t"), () — -~

where the left vertical arrow is zero, the right vertical arrow is the canonical map, and the central
vertical arrow is €, of the maps

X

9 _g9; Xa(sr) —2i
WiSQZJrl 21 Wier+1 21 WiTQZ+1 217

where the first map is the canonical reduction map and the second map is multiplication by a
certain element a(s,r) € W(F,) = Jm_ W, (F,). Moreover, [Thm. 6.3, op. cit.] states that for
any r > 1 there exists sg > r such that if s > sy and ¢ > 1 then Xxa(s,r) is the zero map on
WiTQzﬁ-l—Qi.

Applying ¢ l'gl”r to the system of complexes, one now quickly sees that the limit of the ¢ = 1

parts of the ¢ maps
“lim” W, — “lim” K, (A[t]/ (), (1) (1)

is an isomorphism, which we will denote u. Now, assuming in addition that A is local, we must
more carefully describe u; we refer the reader to [28, 1.5] or [52, §8] for more details on what we
are about to say.

In [3, 1], Bloch called the relative K-group C,K,(A) = K,(A[t]/(t""1),(t)) the curves of
length r on K,; let SC.K,(A) = K¥™(A[t]/(#"*1), (t)) be its symbolic part. Bloch (when p # 2,
an assumption that was removed by [30, §2.2]; see also [51, §11]) showed that SC,K, 1(A) :=
“ M”T @nzo SC, Kp4+1(A) can be equipped with the structure of pro differential graded associative
algebra in such a way that, looking at its degree 0 component, the inverse of the determinant map

{}+ “lim” W,(4) = “Lim” 1+ tA[f]/1 + " Alt] — SC K4 (A)

13
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is an isomorphism of pro rings. The universal property of “ @”T Dy (4) @S & Pro differential graded
algebra therefore implies that there is an induced homomorphism of “ Liin”r W,.(A)-algebras

¢ 1 “lim” Qfy 4y = SCK.p1(A)

(see [3, Thm. 11.§6.2.1] for a detailed proof). This descends to the quotient “ Hm” W, by [28,
Thm. 1.5.2], inducing

s “lm” W, — SC K. (A) = “lim” KPT(A[/(), (1),

which is the desired map. Thus the isomorphism (T) has image inside “lim” K™ (A[t]/(t"), (¢)),
which completes the proof. O

Remark 2.2. Suppose that k is a perfect field of characteristic p # 0. Then str(k) =0 for * > 0,
so the surjection Q{M(k) — W,.Q; shows that W,Q% = 0 for « > 0. Applying the isomorphism ()
of the previous proof, with A = k, we deduce that

“lim” Ko (K[E]/ (27, () = 0

for all n > 2. In fact, if n > 2 is even then already K, (k[t]/(t"),(t)) = 0 for all r > 1 by [23,
Thm. A]. In our proof of Geller’s conjecture we will need the vanishing of this relative group when
n = 2, which can proved in a straightforward classical way by manipulating Steinberg symbols:
see e.g., [12, Lemma 3.4].

Suppose that A is a one-dimensional, Noetherian, reduced semi-local Fj-algebra such that
A— Ais finite, and that the residue fields of A are perfect. Then ﬁ/ IM" may be identified with
a finite product of truncated polynomial rings (see the proof of corollary 2.6) and so the previous
paragraph implies that © @”T Kn(g /O /M) = 0 for all n > 2. From corollary 1.7 we deduce
that

K,(A,m) > K, (AM) @ “lim” K,(4/m",m/m")
for n > 2. It follows that the map K,(A4,m) — K,(A,9M) is surjective and that its kernel is
isomorphic to a direct summand of K,,(A/m", m/m") for r > 0.

2.2 CHARACTERISTIC ZERO

Now we establish the analogue of the previous proposition in characteristic zero. The proof is
inspired by ideas from two papers by A. Krishna [32, 33], especially section 3 of [32]; parts of the
proof are also presented in special cases in the author’s work [41].

Remark 2.3. The following lemma and proposition make use of the Hodge decomposition of
Hochschild and cyclic homology, which we now briefly review; more details may be found in [35,
84.5-4.6]. Let k be a ring containing Q and let R be a k-algebra; all Hochschild and cyclic
homologies will be taken with respect to k.

The action of the Eulerian idempotents egf) € Q[Sym,,], for 1 < ¢ < n, on the Hochschild
complex C4(R) are compatible with the boundary maps, thereby resulting in a direct sum decom-
position of the Hochschild complex

Co(R) =P C(R),  where C)(R) = el C,(R).

i>1

14
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Thus the Hochschild homology groups decompose as HH,,(R) = @, H " (R), where H HY (R) :=
Hn(CSZ) (R)). The cyclic homology groups decompose in a similar way: HC,,(R) = @, H ci) (R).

The canonical surjection HH, (R) — Q}, and antl symmetrlsatlon map ey : QU ) — H H,(R)
induce isomorphisms HHY" (R) = %)), and HC(R) = R/k/dQR/k

The following lemma describes the cyclic homology of graded algebras in the limit; I am grateful
to C. Weibel for explaining this style of argument to me.

Lemma 2.4. Let k be a ring (with respect to which all Hochschild/cyclic homologies in the lemma
will be taken), and A = @~y Aw a positively graded k-algebra. Write A, = @,,~, Aw € A for

2 w>r
each r > 0. Then for any n > 0, the canonical map

HHy(A) — “lm” HHy,(A/A>,)

18 surjective.
Suppose further that k contains Q and that A is a filtered inductive limit of smooth, finite-type
k-algebras. Then

“lm” HC,, (A/As,) = 0

for all 0 < i < n, where the notation means the it" piece of the Hodge decomposition of the reduced

cyclic homology HC, = HC,/HC\.(Ap). Hence

44@77 HO71,(A/A>7~ g ]L Q(A/A>r)/k/dQ A/A>T)/k’
T

where Q* denotes the quotient by on/k.

Proof. For any k-algebra R we let Co(R) = C¥(R) = R®***! denote its Hochschild complex,
whose homology is HH,(R). If R is positively graded, then C,(R) breaks into a direct sum of
subcomplexes, Co(R) = D, 5 Co (1) w, where the weight w piece is

Cp(R)y := @ Ri, ®p -+ @ R;,, € Cn(R)
io+ - tin=w
This in turn induces a decomposition of the Hochschild homology, HH.(R) = >0 HH«(R)w.

Also, write FPCe(R) = D,,>, Ce(R)y for the associated filtration on the complex.
Let r > 0 be given. By considering two cases we will show that if s > (n + 1)r then the map

HH,(A)As)w HH,(A)A>r)w
Im HH,(A), " Im HHp(A)w W

is zero for all w > 0:

case w > (n+ 1)r: Then it is obvious that Cy,(A/A>,)w = 0, and so HH,(A/A>;)w = 0, which
clearly suffices to prove our claim.

case w < s: Notice that C, (4, A>;) = Ker(C,(4) — C,(A/A>y)) is additively generated by
symbols ag ® - - - ® ay, where |a;| > s for at least one ¢, and therefore Co(A, A>,) C F*Co(A).
Hence HH,(A) - HH,(A/A>;) is an isomorphism on the weight w pieces whenever 0 <
w < s; so in this case the left side of () vanishes, which is again sufficient to prove our claim.

15



MATTHEW MORROW

Thus for each n,r > 0 we have found s > r such that the map

HH,(AJA>,)  HHn(A/As))
ImHH,(A)  ImHH,(A)

is zero; this is precisely the statement that HH,(A) — “lim” HH, (A/A>,) is surjective, thereby
proving the first claim of the lemma.

Next, assuming that k contains Q (so that the Hodge decomposition exists) and that A is a fil-
tered inductive limit of smooth, finite-type k-algebras (so that the Hochschild-Konstant—Rosenberg

theorem [35, Thm. 3.4.4] implies HH,(Li)(A) =0 for ¢ # n), we see that

“Yin® A (A/As,) = 0

T

whenever 0 < i < n. So certainly “lim” F/I\fls)(A/AZT) = 0 whenever 0 < i < n.

Extending this to cyclic homology is straightforward. Indeed, the SBI sequence for the re-
duced Hochschild and cyclic homology of a graded ring R breaks into short exact sequences [35,
Thm. 4.1.13], and the S, B, and I maps respect the Hodge grading in a suitable way [Prop. 4.6.9,
op. cit.]:

=~ (i-1) B, 77 (1) I 74
0—HC, ,(R)—HH, (R)— HC, (R)—0.
Thus we obtain short exact sequences of pro A-modules,
0 — “lim” I/{\é(i_l)(A/A> ) — “lim” ff\f{(i)(
— n—1 2T % n

T

A/AZT) - yLn” I—‘/[\é’S)(A/AZT) — 0,

T

and we have just proved that the central term vanishes when 0 < ¢ < n; hence the right term
vanishes, proving the desired vanishing claim for the limit of cyclic homology.

The final claim is immediate from the standard identification of H C’,g") with Q"/ dQr—1. O

Proposition 2.5. Let A be a regular, Noetherian, local Q-algebra, and let n > 1. Then the
canonical injection

“hm” KA/ (), (8) — “lim” K, (A[E]/ (), (1))

T T
is an isomorphism.

Proof. According to the previous lemma with & = Q and A[t] in place of A (which is a filtered
inductive limit of smooth, finite-type Q-algebras by Neron—Popescu desingularisation),

“lim” HOW (AE)/(t7), (1)) = 0 (1)

r

whenever 0 < i < n.

Notice that K, (A[t]/(t"), (t)) is a relative K-group for a nilpotent ideal in a Q-algebra, hence
is a Q-vector space by Weibel [62, 1.5]. So T. Goodwillie’s celebrated isomorphism [19] takes the
form

Ka(A[t)/(t), (1)) = HCu 1 (A[t]/(t7), (1))

16
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This isomorphism respects the Adams/Hodge decompositions by [5, 9]}, thus inducing
i r = i—1 r
K (A[/(), (£) S HOY- P (A7), (1)),
The vanishing of () therefore implies that the canonical inclusion

“lim” K (A[H]/(8), (8) = “Lm” K, (A[e)/(¢7), (1))

is an isomorphism.
It remains to show that Kr(l”)(A[t}/ (t"), (t)) is entirely symbolic. We start with the following
classical Nesterenko—Suslin result [42, Thm. 4.1]: if R is a local ring with an infinite residue field,

then K,(Ln)(R)Q =~ KM(R)qg. Therefore
K (A[t]/(t), (1)) = Ker (KT (A[t]/ (1)) — K (4)) ©2 Q.

Next we use the following standard result concerning Milnor K-theory: If R is a ring and J C R is
an ideal contained inside its Jacobson radical, then x := Ker(KM(R) — KM (R/J)) is generated
by Steinberg symbols of the form {aq,as...,a,}, where a1 € 14+ J and ag,...,a, € A*. (Indeed,
if we let A denote the subgroup of KM (R) generated by such elements, then it is enough to check
that

KM(R)J) = KM(R)/A, {a1,...,an} — {@1,..., 00}

is well-defined, where @ € R* denotes an arbitrary lift of a € (R/J)*.) If moreover J is nilpotent
and R O Q, then 1+ J is a divisible group, whence & is also a divisible group and so

Ker(K) (R) — KM (R/J)) — Ker(K) (R) — KM (R/J)) @7 Q
is surjective. Taking R = A[t]/(¢t") and J = () completes the proof.
(An alternative way to show that Kfln)(A[t] /(t"), (t)) is entirely symbolic is to show that
H CY(LTL_?)(A[L‘] /(t"), (t)) consists entirely of logarithmic forms: these correspond to symbols in K-
theory via the Goodwillie isomorphism.) O
2.3 'THE SHORT EXACT MAYER—-VIETORIS SEQUENCES

The propositions of sections 2.1 and 2.2 yield the following essential corollary:

Corollary 2.6. Let B be a one-dimensional, normal, semi-local ring containing a field; let 9
denote its Jacobson radical. Then the canonical map

Ko (B, M) — “lim” K,,(B/0", /M)

is surjective for all n > 0.

11 am grateful to the referee for pointing out that this statement is often not clearly credited. For any ring
R there are natural maps Kp(R) —2 HNp(R) E HCy—1(R), where chy is the Chern character and B is the
boundary map from cyclic homology to negative cyclic homology.

Now assume that I is a nilpotent ideal of a Q-algebra R. Then a result of Goodwillie [18, Thm. II.5.1] states
that the induced map on relative groups B : HCy,—1(R,I) — HNy,(R,I) is an isomorphism, thereby inducing the
relative Chern character chy : Kn(R,I) — HCp_1(R,I). Moreover, Goodwillie [19] also proved that this relative
Chern character is an isomorphism; his proof relied on a “modified relative Chern character” ch], : Kn(R,I) —
HC,—1(R,I), which was only recently proved, by Cortifias and Weibel [10], to in fact be equal to ch,. However, J.-
L. Cathelineau [5] had already proved that the modified character ch/, respects the Adams/Hodge decompositions.
In conclusion, chyn : Kn(R,I) - HC,—1(R, I) respects the decompositions.
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Proof. Each of the groups on the right is zero if n = 0, so assume n > 0. Let B be the M-adic
completion of B. There is an isomorphism B = [] By, where n varies over the finitely many

maximal ideals of B, and each E; is a complete discrete valuation ring containing a field, hence
isomorphic to ky[[t]] for some field k,. Then

Ko (B/O, /M) = €D Ko (kalt] /(7). (1)

and so the propositions of sections 2.1 and 2.2 imply that

« @u KfLym(B/mr, m/mr) E> « 1'&1” Kn(B/E)ﬁT, m/mr)

This reduces the claim to showing that K™ (B, 9) — K™ (B/9M", /M) is surjective for
each n,r > 1. But this is clear: 9" is contained in the Jacobson radical of B, so B* — (B/9M")*
is surjective. O

We are now prepared to prove our first main result, stating that the long exact, pro-excision,
Mayer—Vietoris sequence breaks into short exact sequences in dimension one; special cases were
established in [41, Prop. 3.8] and [32, Thm. 3.6]. This serves as a singular analogue of the Gersten
conjecture:

Theorem 2.7. Let A be a one-dimensional, Noetherian, reduced semi-local ring containing a field,
and such that A — A is finite; let m and M denote the Jacobson radicals of A and A. For any
n > 0, there is a natural short exact sequence

0 = Kn(A,m) = “lim” K, (A/m", m/m") & K, (4,9) = “lim” K,,(A/M",M/9M") = 0

of pro abelian groups. In other words, the square

K,(A,m) K, (A,9M)

| |

“@”TKH(A/mT,m/mT) . zzmvaKn(g/WV')m/mr)

1s bicartesian in ProAb.

Proof. According to example 1.8, there is a long exact Mayer—Vietoris sequence of relative K-
groups

™)«

Kn(A,m) = “lim” K, (A/m" m/m") & K, (A,9) = “lim” K, (A/9",M/M") -

H

r

But B satisfies the conditions of the previous corollary, so arrow (x) is surjective for all n > 0,
which completes the proof. O

Corollary 2.8. Let A, m, 91 be as in the previous theorem, and fix n > 0.

18
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(i) The kernel (resp. cokernel) of the map Kn(A,m) — K,(A,9M) is isomorphic to a direct
summand of the kernel (resp. cokenel) of the map K, (A/m" m/m") — K,(A/9", M/M")
for r> 0. In particular, the canonical map

K, (A,m) = K, (A/m", m/m") & K, (A,)
is injective for r > 0.

(#i) Let A’ also satisfy the conditions of the previous theorem, and suppose that A — A’ is an
S-analytic isomorphism [63], where S is the set of non-zero-divisors of A (e.g., A’ could
be an étale extension with the same residue field, or the Henselization or completion of A).
Then the S-analytic, relative Mayer—Vietoris sequence breaks into short exact sequences

0 — Kn(Am) = K, (A, m') @ K, (A,M) = K, (A, M) =0

In other words, the kernel and cokernel of the map K,(A,m) — Kn(ﬁ, M) are unchanged
after replacing A by A'.

Proof. According to the theorem, the square of groups

Kn(A,m) Ko (A,0M)

| |

umern(A/mT’m/m’r) - s 441-&177TKn(A//mr’m/m’r)

is bicartesian, and so the kernels (resp. cokernels) of the two horizontal arrows are the same. This
easily implies (i). For (ii), notice that an S-analytic isomorphism A — A’ does not change the
bottom row of the diagram, and thus

Ko(Am) — K,(A,M)

| |

Ko (A m') —— K, (A, M)

is also bicartesian. O

The following is the non-relative version of the theorem, in which we suppose that K, (A) —
K, (A/9M) is surjective for all n > 0; e.g., perhaps A — A/ splits, which is automatic if A is
complete but also holds for unibranch, rational singularities.

Theorem 2.9. Let A,m, 9 be as in the previous theorem, and suppose further that K,(A) —
K, (A/M) is surjective for alln > 0. Then, for any n > 0, there is a natural short exact sequence

0= K,(A) = “lim” K, (A/m") & K, (A) = “lim” K,,(4/9M") — 0.
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Proof. Using the same argument as the previous theorem, it is enough to show that K, (A) —
“lim” K, (A/9M") is surjective. The long exact K-theory sequences for A — A/9 and A/M" —

E/sm split, yielding short exact sequences

0 —— K (AM) ——— K,(A) — K,(A/M) — 0

| |

0 — K,(A/M",M/M") —— K, (A/M") —— K,(A/M) — 0

After taking “ lim”r of the bottom row the left vertical arrow becomes surjective by corollary 2.6,
whence the central vertical arrow also becomes surjective. O

The following is the non-relative version of corollary 2.8:
Corollary 2.10. Let A, m, 0N satisfy the conditions of the previous theorem, and fiz n > 0.

(i) The kernel (resp. cokernel) of the map Kn(A) — K, (A) is isomorphic to a direct summand
of the kernel (resp. cokenel) of the map K,(A/m") — K,(A/9N") for r > 0. In particular,
the canonical map

K, (A) — K,(A/m")® K, (A)
18 injective for r > 0.

(i) Let A’ also satisfy the conditions of the previous theorem, and suppose that A — A’ is an
S-analytic isomorphism [63], where S is the set of non-zero-divisors of A (e.g., A’ could
be an étale extension with the same residue field, or the Henselization or completion of A).
Then the S-analytic, relative Mayer—Vietoris sequence breaks into short eract sequences

0 = Kn(A) = K, (A") @ K, (A) = K, (A)) = 0

In other words, the kernel and cokernel of the map K, (A) — K,(A) are unchanged after
replacing A by A’.

Proof. One repeats the proof of corollary 2.8, using absolute rather than relative K-groups. O

Remark 2.11. Suppose that A satisfies the conditions of the second of the previous theorems.
Then Quillen’s proof of the Gersten conjecture in the geometric case, and its extension to the
general equal characteristic case by Neron—Popescu desingularisation [43] (in fact, the case of an
arbitrary equal charactersitic discrete valuation ring had already been treated by C. Sherman [49]),
tells us that K, (A) — K, (F) is injective, where F is the total quotient ring of A. The corollary
therefore implies that Ker(K,(A) — K,(F)) is ‘small enough’ to embed into K,,(A/m") for some
sufficiently large r. Thus the philosophy of the second theorem is the following:

The K-theory of A is determined by its generic information together with all infinites-
imal thickenings of its closed point.

This philosophy will be made even more precise by our result on K H-theory in the next section.
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Let A, m, 91 be as in the theorems; we will finish this section by showing that the conclusions of
the second theorem and its corollary are not always valid without some sort of surjectivity /splitting
assumption on A. Indeed, supposing that K,,(A4) — K,(A/m") & Kn(g) is injective for r > 0, we
see from the second long exact sequence of corollary 1.7 that

i Ko (/") © Ko () - “lim® Koy (4/90)

is surjective. Since A — A /9 splits after completion, the map “ im” K1 (A7) = K1 (A/9M)
is also surjective, and so we conclude that

K1 (A/m) @ Ky 1(A) = Ky (A/DM)

is surjective. Supposing that A — A/m splits (i.e., A has a coefficient field), the map K, 1(A/m) —
K, +1(A/9M) factors through K, 11(A), and so we see that in fact

Kn-i-l(g) - Kn-&-l(g/gﬁ)
is surjective, which of course need not be true. The following provides a specific example:

Example 2.12. Let A be the local ring of the singular point on the nodal curve Y2 = X?(X +1)
over a field k. We will show that the map

is not injective for any r > 0; to prove this using the above argument we must show that K3(A) —
K3(A/9M) is not surjective:

Well, B := A is the semi-local ring obtained by localising C := k[t] away from two distinct
points z1, 22 € Ai. Quillen’s localisation theorem implies that there is a short exact sequence

0— K.(k) = K.(B)» €  K.a(k)—0.
:ceAllc\{:L’l,:L’g}

However, in the case * = 3, the boundary map @,_,, ., 0= * K3(B) = D,1s, 4, K2(k) is
already surjective when restricted to the symbolic part K3 (B) of K3(B); this is because Ky (k)
is generated by symbols and the tame symbols satisfy
{01,02} z=y
0 T # Y,
if z,y € A}, 6; € kK, and ¢, € k[t] is a local parameter at y.

Writing Ki* = K3/K3*™ as usual, this implies that K*(k) — K4(B) is surjective. So, if

KPB) - KB/ = KP(E) © K (h)

81{917 027ty} - {

were surjective (which would certainly follow from the surjectivity we are aiming to disprove),
we would deduce that the diagonal map Ki"d (k) — Kd(k) @ Ki"d(k) were surjective. However,
KPd(k) is non-zero: for example, its n-torsion is H°(k, u®?) for any n not divisible by char k by
[34], and this is non-zero by picking any such n such that p, C k<. This completes the proof.

In fact, with A still being the local ring of the singular point at a node, one can even show
that Ko(A) — K3(A) @ K3(A) is not injective. The argument is given in [41, Prop. 2.14]: it is
very similar, using the excision sequence for Weibel’s homotopy invariant K-theory to reduce to
the same non-surjectivity assertion.
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2.4  APPLICATION TO K H-THEORY

Now we turn to applications of the main theorems of the previous section.

For a ring R, we denote by K H(R) Weibel’s homotopy invariant K-theory [64], and we write
K®&(X) for the homotopy fibre of K(X) — KH(X) (there does not appear to be a standardised
name for this fibre, but it certainly captures information about the singularities of R; if R is
Ko-regular then KH(R) ~ KV (R) and so K*"8(R) ~ K"!(R)). Recall that K H-theory satisfies
excision, is invariant under nilpotent extensions, and agrees with K-theory on regular rings.

If A is a one-dimensional, Noetherian, reduced, semi-local ring such that A — A is finite,
then the S-analytic isomorphism A — A yields homotopy cartesian squares in both K-theory and
K H-theory:

K(A) —— K(FracA) KH(A) —— KH(FracA)

| L |

-~ -~

K(A) ——> K(FracA)  KH(A) —> KH(FracA)

Taking homotopy fibres shows that K®1&(A) ~ KSi“g(A\); i.e., K®"8 is an analytic invariant of A.
The main purpose of this section is to establish corollary 2.15; first we need a lemma, which we
prove in greater generality than required:

Lemma 2.13. Let A be a one-dimensional, Noetherian, reduced ring such that A — A is finite,
and let f = Anna(A/A) C A be the conductor ideal; let J' be a radical ideal of A contained in Vi
(the radical of § inside A), and set J =ANJ'.

(i) Then KH(A,J)~ K(A,J').
(ii) Moreover, the groups K™ (A) fit into a long exact sequence

RN K:Llng(A) N uy‘w Kn(A/JT’J/JT‘) - uyan Kn(A/J/r’J//JIT) — .

r

Proof. f := J’ Nfis an ideal of both A and A, whose radical in A is J and whose radical in A is
J’. We claim that all the following arrows are weak equivalences:

KH(A,J) — KH(A,f) — KH(A,§) — KH(A,J') « K(A,.J)

Indeed, the first and third are weak equivalences because K H is nil-invariant; the second is because
K H satisfies excision; the fourth is because A and A/J’ are regular (the latter is a finite products
of fields). This proves (i).

For the second claim, we offer a quick proof using pro spectra, which we have not properly
discussed; the cautious reader may replace our homotopy cartesian diagrams of pro spectra by
statements about the pro relative groups.

The square of spectra

KH(A) KH(A)

| |

KH(A)J) — KH(A/)J')
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is homotopy cartesian by the proof of the first part. Meanwhile, according to corollary 1.7, the
square

K(A) K(A)

| |

“lim” K(A/JT) — “lm” K(A/J")

is homotopy cartesian; taking homotopy fibres from the second square to the first, we see that

Ksing (A) %

| |

“lim” hofib(K (A/J") = KH(A/J)) — “lim” hofib(K(A/J") — KH(A/J"))
is homotopy cartesian. Since the rings A/J and Z/ J' are products of fields, we may replace each
K H in the bottom row by K, completing the proof. O

Theorem 2.14. Let A be as in the previous lemma, and assume further that it is semi-local,
contains a field, and that K,,(A) — K, (A/m) is surjective for alln > 1 (e.g., A local and containing
a coefficient field). Then the kernels (resp. cokernels) of the maps

K,(A) — KH,(A), “ l'gl” K,(A/m" m/m") — 1'&1” Kn(ﬁ/S)JTT,DJI/EJJT’")
are canonically isomorphic for all n > 1. Here we use our standard notation that m,9 are the
Jacobson radicals of A, A.

Proof. The surjectivity assumption implies that the long exact sequences for the K and K H-
theories of A — A/m break into short exact sequences:

0 — Kp(A,m) — K,(A) Kp(A/m) — 0

l |

0 — KH,(A,m) — KH,(A) — KH,(A/m) —— 0

Thus the left square in the diagram is bicartesian, and so the vertical arrows have the same kernels
and cokernels. By the previous lemma we may replace K H,, (A, m) by K,,(A,9%), and then theorem
2.7 completes the proof. O

Corollary 2.15. Let A satisfy the conditions of the previous theorem. Then, for any n > 1, the
map
Kn(A) = Ku(Ajm") & K Hy(A)

is injective for r > 0.

Proof. This is an immediate consequence of the previous theorem since the assumption that
K,11(A) = K,11(A/m) is surjective implies that K, (A/m", m/m") C K,,(A/m"). O
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2.5 GELLER’S CONJECTURE IN FINITE CHARACTERISTIC

Now we turn to applications to Geller’s conjecture. S. Geller’s conjecture, raised in 1986 [17], is
the following:

“Let A be a one-dimensional, Noetherian, reduced local ring, with total quotient ring
F. Then the map K>(A) — Ky(F) is injective if and only if A is regular.”

The ‘if’ direction is a classical theorem of K. Dennis and M. Stein [12, Thm. 2.2]. Geller herself
established the conjecture provided that A has equal characteristic, perfect residue field, and
seminormal singularities. Except for this seminormal case there has been no progress on Geller’s
conjecture in finite characteristic. As discussed in the introduction, Krishna [32] reduced Geller’s
conjecture in characteristic zero to an Artinian analogue, just as Cortinas, Geller, and Weibel [8]
had done earlier for Berger’s conjecture on differential forms.

Using similar ideas we offer the following complete solution to Geller’s conjecture for equal
characteristic rings with perfect residue field of finite characteristic:

Theorem 2.16 (Geller’s conjecture in characteristic p). Let A be a one-dimensional, Noetherian,
reduced, local Fp,-algebra whose residue field is perfect and such that A — A is finite. Suppose that

the map

is injective, where F' is the total quotient ring of A. Then A is reqular.

Proof. As usual, let m denote the maximal ideal of A, and 91 the Jacobson radical of A Let A
be the m-adic completion of A; we will show it is sufficient to prove the theorem for A in place of

A. We first claim that A is reduced and that A — A is finite. Indeed, by flatness of completion,
A embeds into A = A® A ﬁ, which is a finite product of complete discrete valuation rings since A
is a finite product of discrete valuation rings; therefore A is reduced. This shows moreover that A

is normal and finite over //1\7 whence it is equal to 21\, completing the proof of our claim.
The map A — A is an S-analytic isomorphism [63], where S is the set of non-zero-divisors of
A, and so there is a resulting long-exact, Mayer—Vietoris sequence

-~ ~

o Kp(A) = Ky (F)e Kp(A) = Kp(F) — -+

where F' is the total quotient ring of A. From the assumption that Ky(A) — Ko(F) is injective,
and the fact that K;(A) = A* — K (F) = F* is injective, this long-exact sequence yields a short
exact sequence

~ ~

whence K»(A) = Ky(F) is also injective; moreover, A is regular if and only if A is regular, since
the two rings have the same dimension and isomorphic cotangent spaces. Therefore we may replace
A by A in the rest of the proof. Since any complete, Noetherian, local ring of equal characteristic

contains a coefficient field [6, Thm. 9], and since A is a finite product of such rings, we may
therefore henceforth assume that the morphisms A — A/m and A — A/9 split.
Using these splitting assumptions we will now deduce that the map Ks(A4,m) — Ko(A, M) is

injective. Indeed, the splitting assumptions imply that K5(A,m) C K5(A) and Ky (A, 9M) C Ky (A),

so it is enough to prove that K3(A) — K2(A) is injective; but we are assuming the stronger result
that Ks(A) — Ko(F') is injective.
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Moreover, by [12, Lemma 3.4] (see also remark 2.2), the pro abelian group ¢ Jm” Ky (k[t]/(t7), (1))

vanishes if k is any perfect field of finite characteristic. Since A /9" is a finite product of such trun-
cated polynomial rings, we deduce that “ I.&H”T Ky(A/9M" M/9M") = 0. The short exact sequence
of theorem 2.7 therefore yields a surjection

Ky(A,m) — “lim” Ky(A/m", m/m") & Ka(A, M)

(even an isomorphism, but we don’t need this). So, considering the maps
Ky(A,m) = “lim” Kp(A/m", m/m") & Ky(A, ) 2% Kp(A, M),

we have proved that the composition is injective and the first arrow is surjective. It follows that

“ 1& Ky(A/m", m/m") =0, (t)

which is the key to completing the proof.

Each group Ko(A/m") is generated by Steinberg symbols, whence the transition maps Ko(A/m" 1) —
K5(A/m") are surjective; since K(A/m”, m/m") is contained in K2(A/m") for all r, thanks to the
splitting of A/m” — A/m, it follows that the transition maps

Ko(A/m™ ™ m/m"™) = Ky(A/m" m/m")
are also surjective. Therefore the vanishing of the pro abelian group (f) implies the vanishing of

the individual groups: Ks(A/m",m/m") = 0 for all » > 1. To complete the proof, it therefore
suffices to prove the following claim:

If A is not regular, then K5(A/m? m/m?) is non-zero.

Well, if A is not regular, then dim, m/m? > 2, where k = A/m; let z,y € m/m? be linearly
independent elements. There are various ways to show that the Dennis—Stein symbol

(z,y) € Ky(A/m? m/m?)

is non-zero, which will complete the proof, the easiest of which is probably the following. The
Maazen—Steinstra presentation of Kj(A/m? m/m?) using Dennis-Stein symbols [36, Thm. 3.1]
readily implies that there is a well-defined homomorphism (having fixed a splitting of A/m? — k)

Ka(A/m? m/m?) — (/\i A/m2> /(a/\b taorbisin k) = /\im/mQ, (a,b) = a A b,

where at least one of a,b € A/m? belongs to m/m?; this takes (z,y) toz Ay € /\i m/m?, where it
is non-zero by choice of x and y. O

2.6 RELATION TO CYCLIC HOMOLOGY IN CHARACTERISTIC ZERO

The aim of this section is theorem 2.20 below, offering an alternative to Geller’s conjecture in
characteristic zero. The key tool however, which likely has other applications and depends crucially
on our main theorem 2.7, is corollary 2.18, stating that the kernel of a map between K-groups is
isomorphic to the analogous kernel for cyclic homology.

We start with the cyclic homology version of our main theorem 2.7:
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Proposition 2.17. Let A be a one-dimensional, Noetherian, reduced, semi-local Q-algebra such
that A — A is finite, and let n > 0. Then the natural square

HC,(A,m) HC, (A, M)

| |

“lim” HC,(A/m",m/m") —— “lim” HC,(A/0",90/")

is bicartesian in ProAb, where all cyclic homologies are taken with respect to Q.

Proof. The proof is essentially the same as for K-theory, so we will be brief. Firstly, G. Cortinas’
[7] proof of the KABI conjecture implies that we may replace K,, by HC,,_; in the vanishing result
of corollary 1.7; hence the subsequent long-exact, Mayer—Vietoris sequences remain valid for cyclic
homology in place of K-theory. In particular, there is a long exact, Mayer—Vietoris sequence

- = HCp(A,m) = “lim” HC, (A/m”, m/m")@&HC, (A, M) — “lim” HC,, (A/9M,M/MM") = -+,

r

so to complete the proof it is sufficient to show that

HC,(A,9) “p_” HC, (A9, 2 /90")

is surjective. Fortunately, lemma 2.4 implies that the right side of this morphism is

“lim” Ker (Q%, /dQ">

Ty — Q% m/dQ

A/zmr A/zm)

Since Ker(HC,(A) — HC,(A/9M)) contains a direct summand isomorphic to Ker(Q%/dQZ{l —
/dQ

one sees that the desired morphism is surjective. O

A/Dﬁ A/m)

Corollary 2.18. Let A be as in the previous proposition and let n > 1. Then the kernel (resp.
cokernel) of the maps

Kn(Am) = K, (A9M),  HC,_1(A,m) — HC,_1(A,0M)
are canonically isomorphic.

Proof. This is a consequence of the previous proposition, the analogous theorem for K-theory
(namely theorem 2.7), and the Goodwillie isomorphism. O

Before we can use the corollary to prove the main theorem of the section, we need a ‘cyclic
homology criterion for smoothness’. In the following result we denote by 2%, Jk the de Rham mixed

complex of a k-algebra R, whose Hochschild and cyclic homologies are respectively H H, (£, / K) =
O and HC, (23, 0) = Q0 /dQ L @ @B,y Hig 7 (R/E).

Lemma 2.19. Let k C K be an extension of characteristic zero fields, and let R be an essentially
finite type K -algebra which is not smooth over K. Then the canonical map

HCR(R) — HC(Q%)1,)

is mot injective for some n > 2.
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Proof. The Hochschild homology criterion for smoothness [2], which offers an converse to the
Hoschschild-Konstant—Rosenberg theorem, says that if R is a finitely generated algebra over a
field K, then Q%/K — HHX(R) is an isomorphism for all n > 0 if and only if R is smooth over
K. Obviously this remains valid if R is merely essentially of finite type over K, but we will also
need to be able to replace K by k, which we do as follows.

According to the Kiinneth decomposition and base change for Hochschild homology, one has
isomorphisms of graded algebras

HHF(R) 2y, K2 HHX(R®, K) = HHX(R) 2 x HHE (K ©, K)
=~ HH[ (R) @ U,
Using the same decomposition for de Rham complexes, we see from faithfully flat descent that if

Qg1 — HHPF(R) were to be an isomorphism, then so would be Qp/x — HHE(R). In conclusion,

since we are assuming R is not smooth over K, we deduce that QF T HHF(R) is not an
isomorphism for some n > 0.

Next, the following result may be proved by a straightforward induction using the SBI se-
quences: if C4 — D, is a morphism of mixed complexes such that HH,(C,) — HH,(D,) is
surjective for all n > 0 and such that HC,,(Cs) — HC,(D,) is injective for all n > 0, then in fact
HC,(Cs) — HCy(D,) is an isomorphism for all n > 0 (and so HH,(Cs) — HH,,(D,) is also an
isomorphism for all n > 0).

So, letting C¥(R) denotes the Hochschild complex of R as a k-algebra, the usual morphism of
mixed complexes [35, §2.3]

WCE<R)_>Q;{/]§; roR QT = rodri A ATy

induces a surjection on the associated Hochschild homologies, but not an isomorphism by what we
saw above; therefore the induced map on the cyclic homologies

HCR(R) = HCn (%)
is not injective for some n > 2 (it is an isomorphism for n = 0,1), as desired. O]

Now we are equipped to prove our higher degree alternative to Geller’s conjecture:

Theorem 2.20. Let A be a one-dimensional, reduced, semi-local ring which is essentially of finite
type over some characteristic zero field, and assume that A is not reqular. Then the map

K,(A) — K, (Frac A)
is not injective for some n > 3.
Proof. Just as we replaced A by its completion in the proof of theorem 2.16, here we may replace
A by a large enough finite extension to ensure that A — A/m and A — A/9 split. Then
K,(A,m) C K,(A) and K,,(4,0M) C K, (A), so it is enough to prove that K, (A, m) — K, (A4,0N)
is not injective for some n > 3. According to the previous corollary, it is therefore sufficient to

prove that HC,, (A, m) — HC,(A,9N) is not injective for some n > 2.
Well, by the previous lemma we may find n > 2 and non-zero 2z € HC,,(A) such that x vanishes

in HCy, (2% ). Since HC,(A/m) = HCp (274 /) ) and HC,(A) = HCn(Q'Z/Q), we deduce that
a vanishes in both HC,,(A) and HC,,(A/m), so belongs to HC,, (A, m) C HC,,(A); this completes
the proof. ]

Remark 2.21. Using the same techniques, it appears it may be possible to strengthen the con-
clusion of the previous theorem to ‘not injective for infinitely many n > 3’.
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3 THE CASE OF FINITE RESIDUE FIELDS

In this section we use the pro-excision results from section 1 to study one-dimensional, Noetherian,
reduced rings with finite normalisation map, all of whose residue fields are finite: e.g., orders in
number fields, affine reduced curves over finite fields, and local versions of these. Notice that
corollary 1.7 applies to such rings. Before specialising to the arithmetic setting, we begin by
establishing some general results.

We need the following:

Lemma 3.1. Let R be a finite ring. Then K, (R) is finite for alln > 1.

In particular, if A is a one-dimensional, Noetherian ring all of whose residue fields are finite,
and I C A is an ideal such that A/I has finite length, then K,(A/I") is finite for all r,n > 1.
Hence @T K, (A/I") is a profinite group.

Proof. 1 am grateful to V. Angeltveit for explaining the argument to me. Firstly, Bass stability
implies that, for any fixed n, H,(BGL(R)",Z) = H,(GL(R),Z) = H,(GL,(R),Z) for m suffi-
ciently large, and H,,(GL,,(R),Z) is finite for n > 1 since GL,,(R) is a finite group. Thus all the
integral homology groups of degree > 1 of the K-theory space BGL(R)™T are finite.

Since BGL(R)™" is an infinite loop space, its m; acts trivially on its m, for all n > 1, so the
theory of Serre classes tells us that

o (BGL(R)™T) is finite for all n > 1 <= H,,(BGL(R)*,Z) is finite for all n > 1,

completing the first part of the proof.
The ‘in particular’ claim follows from the fact that A/I" is finite for all r > 1. O

Proposition 3.2. Let A be a one-dimensional, Noetherian, reduced ring such that A — Ais finite,
and all of whose residue fields are finite. Then

K,(A) = K,(A)

has finite kernel and cokernel for alln > 1. B
Moreover, if £ is a prime number invertible in A/f, where § denotes the conductor of A — A,
then the kernel and cokernel have no £-torsion.

Proof. Consider the following diagram of spectra

K(A, B,f) —— K(A,f) —— K(B,f)

L

K(A) — = K(B)

L

K(Aff) — K(B/})

in which the two columns and the top row are homotopy fibre sequences. According to proposition
1.4(iv), if n > 1 then K, (A, B,§) embeds into K,,(A/f", B/f",§/f") for r > 0; but this latter group
is finite by the previous lemma, and so K, (A, B, f) is finite. Hence, in the Serre quotient category

28



K-THEORY OF ONE-DIMENSIONAL RINGS

Ab/FinAb we have K, (A,f) = K,(B,f) and K,(A/f) & K,(B/f) = 0 for all n > 1; the claim
follows.

If ¢ is a prime number invertible in A/f, then the relative groups K, (A,§"), K,(B,{") have no
¢-torsion by [62, Consequence 1.4], so we may repeat the previous argument, replacing the category
FinAb by the category of finite abelian groups without ¢-torsion. O

Our next aim is to show that the long exact, Mayer—Vietoris sequences of pro abelian groups
from section 1 can actually be realised to the level to profinite groups; this is a formal consequence
of the following lemma:

Lemma 3.3. Let

= Ay — “l'r&n” An(r) — “ern” B,(r) = A1 — -

be a long exact sequence in Pro Ab, where A,, A, (r), Bn(r) € Ab. Suppose that the group B, (r) is
finite for all n,r. Then the resulting complex of groups

—>An—>Li_Fr1An(r) —>@Bn(r) — Ap_1 =

T

18 exact.

Proof. Firstly, there is no loss of generality in assuming that the long exact sequence in Pro Ab
arises from an inverse system of complexes of abelian groups

Co(r) = o= A = An(r) = Ba(r) = Apor — -

For each n, the pro abelian group @”rlm(An — A, (r)) has surjective transition maps, while
“lim” Im(A,(r) = By(r)) is a limit of finite groups and hence satisfies the Mittag-Leffler condi-
tion; it easily follows that @”T A, (r) also satisfies the Mittag-Leffler condition.

Thus all terms in the inverse system of complexes --- — Co(2) — Co(1) satisfy the Mittag-
Leffler condition, so a standard result on hyper derived functors (e.g., [65, Thm. 3.5.8]) states that
there are short exact sequences in homology

0 = lim' Hy1(Ca(r)) = Hy(lim Ca(r)) — lim Hy (Co(r)) — 0.

The two outer groups vanish since the pro abelian groups @”T H, (Ce(r)) = Hp(“ @”T Co(r))
are zero; hence H, (@T C,4(r)) vanishes for all n, as desired.

Corollary 3.4. Let A be a one-dimensional, Noetherian, reduced semi-local ring such that A — g
is finite, and all of whose residue fields are finite; let m, M denote the Jacobson radicals of A, A.
Then there are long exact, Mayer—Vietoris sequences of abelian groups

o K (A) > im K (A/m") & K, (B) = lim K, (B/9) — -
s T
= Kp(4,m) — LiLnKn(A/m’“7m/m7") @ K,(B,M) — @KH(B/mr,sm/zm’“) — -
Proof. This follows by applying the previous two lemmas to the exact sequences of example 1.8. [
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In order to prove the analogue in the finite residue field case of our main theorem 2.9, we would
like to check condition (i) of the following corollary; the corollary shows that this would follow
from showing, informally, that lim K, 1(A/m") is ‘open’ in lim K, 11 (A/9M") and that K, 1(A)
. . . r . o .
is ‘dense’. Despite being a conceivable ‘continuity’ property of K-theory, we will only be able to
prove this in special cases.

Corollary 3.5. Let notation be as in the previous corollary. Then the following are equivalent:
(i) Kn(A) = K,(A/m") & K, (A) is injective for r > 0.

(i) lim K1 (A/m") @ K, 41 (A) — Jim K1 (A/ON7) is surjective.

Proof. Since the kernel of K,,(A) — K,,(A) is finite by proposition 3.2, one sees that (i) is equivalent

to the injectivity of K, (A) — lim K, (A/m") @ K, (A). The result therefore follows from the first
long exact sequence of the previous corollary. O

3.1 THE GLOBAL CASE

Here we apply pro-excision and the preliminary observations of the previous section to deduce
finiteness properties of K-groups of orders in number fields and non-smooth curves over finite
fields.

We begin with the geometric case. A celebrated theorem due to G. Harder [21] and C. Soulé [50]
states that the higher K-groups of a smooth projective curve over a finite field are finite groups;
we can remove the smoothness hypothesis:

Theorem 3.6. Let k be a finite field and X a one-dimensional, reduced scheme, separated and

of finite type over k. Then K,(X) — K,(X) has finite kernel and cokernel for alln > 1. In
particular, if X/k is proper then K, (X) is finite for all n > 1.

Proof. The first claim is a straightforward induction, using proposition 3.2, on the number of affine
patches required to cover X. Indeed, let 7 : X — X be the normalisation map, and U,V C X
an open cover of X such that the claim has been proved for U, V, and U N V. Then Thomason—
Trobaugh Zariski descent [58, Thm. 8.1] provides us with long exact Mayer—Vietoris sequences

e K (X)) — K,(U)2 K,(V) —= K,(UNV) —s --.

i | |

s K (X) — K, (U)K, (V) —= K, (UNV) —> -

By hypothesis the right and central vertical arrows have finite kernel and cokernel for n > 1,
whence the same is true of the left vertical arrow. B
The second claim follows by applying the Harder—Soulé theorem to X. O

The analogue in the arithmetic case of Harder—Soulé’s result is that of A. Borel [4] and
D. Quillen [46], stating that the K-groups of the ring of integers of a number field are finitely
generated and precisely identifying their ranks.

Theorem 3.7. Let F' be a number field with ring of integers O, and let A C O be an order (i.e.
any subring with fractions F'). Then K,,(A) is a finitely generated abelian group and K,,(A)®@Q —
K, (0O)®Q is an isomorphism for all n > 1.
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Proof. A automatically satisfies the conditions of proposition 3.2 and A= O, whence the claims
follows from Borel-Quillen. O

3.2 THE LOCAL CASE: FINITE Z,-ALGEBRAS

In this section we will apply pro-excision to the study of certain finite Z,-algebras; to be precise,
we will be interested in rings A satisfying the following equivalent conditions:

(i) A is a reduced Z,-algebra which is finitely generated and torsion-free as a Z,-module.

(ii) A is a one-dimensional, Noetherian, reduced, complete semi-local ring, of mixed characteristic
(0,p), and having finite residue fields.

If A satisfies these conditions then its total quotient ring Frac A is a finite product of finite exten-
sions of Qp, and its normalisation A is the product of their rings of integers; the Jacobson radicals
of A and A will always be denoted m and 90 respectively. Note that A — A is a finite morphism
because A, being complete, is excellent and hence has finite normalisation [20, 7.8.3].

It would be more straightforward (and intuitive) to assume in addition that A is a local domain,
but this restriction would later cause problems.

Example 3.8. Here we offer some examples and basic properties of such rings:

(i) Let O be the ring of integers of a finite extension of Q,, and let p be the maximal ideal of
O. Then A := Z, + p® satisfies the above conditions for any s > 1; moreover, A = O and
A/m =T,

(ii) Let Oq,..., O, be rings of integers of finite extensions of Q,, and let p1,...,p, denote their
maximal ideals. Let k be a finite field contained in all O /p1,..., O, /pn; e.g., k = F), suffices.
Then

A= {(fz) € 1_[z O; : f; mod p; belongs to k and does not depend on z}

is a seminormal local ring satisfying the above conditions, with normalisation [], O; and
residue field k.

(iii) Suppose A is local and satisfies the above conditions. Then Hensel’s lemma implies that A
contains the Teichmiiller lifts of its residue field A/m = F,. Since A also contains Z,, we
deduce it contains Z, := W (F,).

(iv) If O is the ring of integers of a finite extension of Q, and G is a finite group, then the group
algebra OG satisfies the above conditions. The only condition which is not immediate is
that OG is reduced, but it is enough to check this when G is cyclic, in which case OG =
O[X]/(X™ —1) for some n > 1, and this is reduced since X™ — 1 has no repeated factors in
the UFD O[X]. For example, if G is the cyclic group of order p, then Z,G is the seminormal
ring constructed in (ii) from the fields Q, and Q,(¢,); i.e.,

LG =A{(f,9) € Zp X Zp[(y] : f mod (p) = g mod (1 —¢)}.
The topological K -groups of a semi-local ring A with Jacobson radical m are defined by

KPP(A) := m,(K'"P(A)), K"P(A):= holimK(A/mT)
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The following isomorphisms, the second of which is a deep theorem of A. Suslin and A. Yufryakov,
relate completed K-groups, topological K-groups, and K-groups with Z-coefficients (which we
comment on after the lemma); these isomorphisms will be essential tools for our study of the
K-groups of finite Z,-algebras.

Lemma 3.9. Let A be a Zy-algebra which is finitely generated as a Z,-module; let m be the
Jacobson radical of A. For all n > 1, there are canonical isomorphisms

lim K, (A/m") = K7P(A) = K, (4; Z).

Proof. The topological K-groups fit into short exact sequences

0 = lim' K41 (A/m") — K;P(A) = lim K, (A/m") = 0.

But K,,11(A/m") is finite for all 7 (lemma 3.1), so the l'&n1 term vanishes and we get isomorphisms
K!oP(A) = m K,(A/m") for n > 0.

Next, since A is a finite Z,-algebra, A. Suslin and A. Yufryakov [53, 56] proved that the canonical
map K(A) — K*P(A) induces a weak equivalence after profinite completion: K (A4) = K%P(A)"
(the full argument can be found in the appendix of [24]). But profinite completion commutes with
homotopy limits, and so

)

K'P(4)" = holim (K(A/mT)A) = holim K (4/m"),

where the final equality follows again from the fact that K(A/m") has finite homotopy groups, at
least if we ignore mg: thus () is actually only an equality if we restrict to a connected component
of each side. Hence m,(K(A) ) = K!°P(A)) for n > 0, establishing the second isomorphism. [

Remark 3.10. K-theory K, (—; Z) = . (K(=)") with Z-coefficients is defined to be the homotopy
groups of the profinite completion of the K-theory spectrum. It is described by short exact

sequences =R
0 — BExt3(Q/Z, K,(—)) = Kn(—;Z) — Homz(Q/Z, K,,_1(—)) = 0

0= lim' Kn(—)[\] = Extz(Q/Z, Kn(=)) = Kn(=) =0
A

where A varies over positive integers ordered by divisibility, C[A] denotes the A-torsion of an abelian
group C, and C~ = @A C/A\C denotes the Z-completion of C.

Let F be a finite extension of Q, with ring of integers O. We must review the structure of the
K-groups of O. For more details we refer the reader to the survey [59, §5].
Let i > 1, and set

wi(F) = #H(F, (i), wi (F) = #H (F, py< (i),
where j (resp. pp=) denote the group of all (resp. p-power) roots of unity in F8; then
LZjwi(F)L= HO(F,p(i)),  Zjw® (F)Z = HO(F, py=(i)).
Then K»;(O) decomposes into a direct sum
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where D;(O) is a divisible Z,)-module. On the other hand, the e-invariant e : Ky 1(0) —
Z/w;(F)Z induces a direct sum decomposition

where T;(O) is a torsion-free Z,)-module.

Example 3.11. Consider the case n = 2 as an example. Let F' be a finite extension of @@, and
let pp C F be the group of roots of unity inside it; put m = |upr|. Then the Hilbert symbol
induces a surjective homomorphism H : K3(F) — pp. A theorem of C. Moore [39] states that
Ker H = mK>(F) and that this kernel is an uncountable, divisible group (even uniquely-divisible,
by [38]) contained inside K2(O); moreover, Ky(F') — up splits.

Restricting to K5(O) one obtains a split short exact sequence

0 — Ker H = D1(0) — Ko(0) — p¥) = 7/wP (F)Z — 0

where uif) denotes the p-power roots of unity inside F'.

Using pro-excision we may generalise these structural descriptions to all finite Z,-algebras
satisfying the equivalent conditions (i)—(ii) above:

Theorem 3.12. Let A be a reduced Zy-algebra which is finitely generated and torsion-free as a
Z,-module, and let i > 1. Then Ko;(A) decomposes as a direct sum

Koi(A) = Dy(A) & WP (A)

where D;(A) is a divisible Z,)-module and Wi(p)(A) is a finite p-group. On the other hand,
Ksi—1(A) decomposes as a direct sum

Ksi1(A) =2 T;(A) & W;(A)
where T;(A) is a torsion-free Z,)-module and W;(A) is a finite group.

Proof. Let F' = Frac A be the total quotient ring of A and let O = A be its normalisation. The
claims are clearly true for O since it is a finite product of rings of integers of finite extensions of
Qp; therefore we may write D;(O), V[/i(p)(O)7 etc. having the claimed properties.

Proposition 3.2 implies that the kernel and cokernel of

Kai(A) = Ky(0) = Dy(0) ® WP (0)

are finite p-groups. Therefore the kernel and cokernel of the composition K»;(A) — D;(O) are finite
p-groups; but divisible groups have no non-trivial finite images, so this map is actually surjective.
The first claim now follows from the algebraic lemma 3.18(ii) which we have postponed until the
end of the section to avoid disrupting the exposition.

For the odd case, the same argument implies that the kernel (resp. cokernel) of the composition
Ky 1(A) = Ky;_1(0) — T;(0O) is a finite group (resp. finite p-group). Its image is therefore a
torsion-free Z,)-submodule of T;(0), and so we deduce that Ko;_1(A)tors is a finite subgroup of
Ks;—1(A). Finally we use algebraic lemma 3.18(i) to see that

0 — Koi—1(A)tors = Kai—1(A) = Koi—1(A)/Kai—1(A)tors = 0

splits. O
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Remark 3.13. We stress that although the direct sum decompositions appearing in the proposi-
tion are not unique, the summands themselves are. Firstly, D;(A) = ),,»; nf2i(A) is the maximal

divisible subgroup of K»;(A), and Wi(p ) (A) is the quotient. Secondly, W;(A) is the torsion subgroup
of K9;—1(A), and T;(A) is the quotient.

Remark 3.14. Gabber rigidity [13] (and Quillen’s calculation of the K-theory of finite fields)
implies that W;(A) ®z Z[%} >~ Ko;—1(A/m).

From the proposition we obtain structural descriptions of the K-theory of A with Z coefficients,
again analogous to what is know for rings of integers of local fields; also, recall from lemma 3.9
that K, (A;Z) = lim, K,(A/m") for all n > 1:

Corollary 3.15. Let A be a reduced Zy,-algebra which is finitely generated and torsion-free as a
Zp-module, let © > 1, and continue to use the notation introduced in the previous theorem. Then
there is a natural isomorphism

Kyi(A; Z) = WP (A)

K2

and a short exact sequence

0= Kait1(A) — Koiy1(4; 2) — Homgz(Q/Z, D;(A)) — 0.

~

Proof. These readily follow from the standard short exact sequences for K,(—;Z) given in remark
3.10. 0

Now we may prove an arithmetic analogue of the main results in section 2.3; unfortunately we
can only prove it in odd degrees:

Theorem 3.16. Let A be a reduced Zy-algebra which is finitely generated and torsion-free as a
Zp-module, and let ¢ > 1. Then there is a short exact sequence

0— Kgifl(A) — “I.&H” Kgl',l(A/mT) (&) Kgifl(;() — @1” Kgi,l(Z/DﬁT).

In particular,

Kyi_1(A) = Ky 1(A/m") @ Ka;_1(A)
is injective for all v > 0.

Proof. Applying lemma 3.9 and the previous corollary to A, we see that

Kai(A) — lim Koy (A/90) = Koi(A: Z) = WP (4)

is surjective. The claimed injectivity now follows from corollary 3.5, and then the short exact
sequence follows from example 1.8. O

We would like to prove the injectivity claim of the previous theorem in even degrees; such a
result would imply that the first long exact Mayer—Vietoris sequence of example 1.8 breaks into
short exact sequences, thereby fully extending the main results of section 2.3 to such finite Z,-
algebras. Unfortunately, the best that we can offer in even degree is a list of equivalent conditions
which reduces the problem to understanding the torsion in Ks;(A4), which is unfortunately a difficult
problem whose solution is only know when ¢ = 1:
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Proposition 3.17. Let A be a reduced Z,-algebra which is finitely generated and torsion-free as
a Zp-module, and let i > 1. Then the following are equivalent:

(i) Koi(A) = Koi(A/m") & Koi(A) is injective for all r > 0.

(ii) The canonical map Homz(Q/Z, D;(A)) — Homz(Q/Z, D;(A)) is surjective.

(i) The canonical map D;(A) — D;(A) is injective.

(iv) The canonical map D;(A) — D;(A) is an isomorphism.

Proof. Corollary 3.15 implies that Wi(p)(A) = K9;(A)/D;(A) embeds into Ky;(A/m") for r > 0,
from which (i)<(iii) easily follows. Next notice that the map D;(A) — D;(A) has finite kernel
and cokernel by proposition 3.2; since the cokernel is divisible it is actually zero, and so this map

is surjective. This proves (iii)<(iv) and gives a short exact sequence

0—G— D;(A) - D;(A) =» 0

where G is a finite group. The long exact sequence for Ext;,(Q/Z, —) of this sequence degenerates
to

0 — Homyz(Q/Z, D;(A)) — Homy(Q/Z, D;(A)) — G — 0,

which proves (i)« (iii). O

We finish this section by collecting together the various results from abstract algebra which
were required in the proof of theorem 3.12:

Lemma 3.18. (i) Let G be an abelian group and suppose that the subgroup of torsion elements
Giors has finite exponent. Then Gyors is a direct summand of G.

(i) Let
0—-—B—-C—=D—=0

be a short exact sequence of abelian groups, where B is finite and D is divisible. Then C is
isomorphic to the direct sum of a divisible group and a finite group which is a quotient of B.

Proof. (i) is a (perhaps unfamiliar) result from the theory of pure subgroups; e.g., see [48, 4.3.9].

(ii): Since B is finite, its lattice of subgroups nC' N B, n > 1, is eventually constant, equal to
By C B, say. In other words, there is a fixed integer m > 1 such that nmC N B = B, for all
n > 1. Since D is divisible, the map mC — D is surjective, and so we obtain an isomorphism
mC'/By, = D; moreover, By, C (),,~, nmC by construction, and so it easily follows that mC'is a
divisible group.

Since C'/B is m-divisible, the map B — C/mC is surjective, and thus induces an isomorphism
B/B,, = C/mC. In conclusion we obtain an exact sequence

0—mC —C — B/Byx — 0,

where mC' is a divisible group and B/By, is a finite group. But Baer’s well-known criterion states
that divisible groups are injective in the category Ab, and so this exact sequence splits. O
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3.3 FINITE Z,-ALGEBRAS CONTINUED: K3 AND GELLER'S CONJECTURE

We continue to study pro-excision for finite Z,-algebras, now focussing on Ky and applications to
Geller’s conjecture in mixed characteristic. For a reduced Z,-algebra which is finitely generated
and torsion-free as a Z,-module, lemma 3.9 and corollary 3.15 tell us that

Ky (4;Z) = WP (A) = lim K>(A/m") = K>(A/m")  (r>0),

which is a finite p-group. Moreover, example 3.11 implies that if A is normal then this group is
simply the group of p-power roots of unity inside A.
For Ky of such Z,-algebras we can prove the full analogue of the main theorems of section 2.3:

Theorem 3.19. Let A be a reduced Z,-algebra which is finitely generated and torsion-free as a
Zy-module. Then D1(A) is torsion-free and there is a short exact, Mayer—Vietoris sequence

0 — Ka(A) = Ky(A;Z) @ Ko(A) — Ko(A;Z) — 0.
Proof. Example 3.11 implies that Dl(g) is not merely divisible, but is also torsion-free. Hence
Homy(Q/Z, D, (g)) = 0, so condition (ii) of proposition 3.17 implies that K5(A) — Ky(A/m") &
K5(A) is injective for 7 > 0 and that Dy(A) = Dy(A). Also, K1(A) = A% — K;(A) = A* is
injective. Combining these two results with the long exact sequence of corollary 3.4 implies that
there is a short exact sequence

0 = K>(A) = lim K2(A/m") & K2(A) — lim Ky(A/MM") — 0,

r

which is the desired result. O

A useful diagrammatic way to restate the theorem is the following;:

N

) —— Ky(A) —— KQ(A;Z) — 0

A

) —— Ky(A) —— KQ(/T;Z) — 0

OHDl(

|

OHDl(

1R

b N}

Thus the right square is bicartesian and all reasonable questions concerning the central vertical
arrow can be reduced to an analogous question for the right vertical arrow. In particular we obtain
the following, which reduces Geller’s conjecture in mixed charactersitic to an Artinian version
(c.f. the opening paragraph of section 2.5):

Corollary 3.20. Let A be a one-dimensional, Noetherian, reduced local ring of mized characteristic
(0,p), with finite residue field, and such that A — A is finite. Consider the following statements:

(i) Ko(A) — Ko(Frac A) is injective.
(ii) Ka(A) —s Ko(Frac A) is injective.
(iii) KQ(;{; Z) — Ky (A; Z) is injective.

(iv) Ka(AjmT™) — Ko(A/DMT) is injective for r > 0.
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Then (i)= (1)< (iii)< (iv).

Proof. (i)=-(ii) is proved exactly as in the proof of theorem 2.16. The remaining equivalences
are clear in light of the above bicartesian square since A satisfies the conditions of the previous
theorem. 0

Using the corollary and a handful of lemmas which we postpone until afterwards, we can now
present the first ever results on Geller’s conjecture in mixed characteristic. We can rarely show
that A is regular, i.e., embdim A = 1, but only that embdim A < 2. This is a consequence of the
inability of our methods to detect the crucial element p € A.

Additionally, in case (ii) of the theorem we must exclude one possibility, which we now explain.
If ¢ is a power of p and O is the ring of integers of a finite extension of Frac Z,, then

{(f,9) € Zy x O : f mod pZ; = g mod p} M

(p is the maximal ideal of O) is a seminormal finite Z,-algebra as in example 3.8(ii); if moreover
O/p is a strict extension of F, and O also contains non-trivial p-power roots of unity, then we say
that (f) is bad.

Theorem 3.21. Let A be a one-dimensional, Noetherian, reduced local ring of mized characteristic
(0,p) such that A — A is finite, and with finite residue field. Assume p # 2 and suppose that at
least one of the following is true:

(i) Frac A contains no non-trivial p-power Toots of unity; or
(i) A is seminormal, but A is not isomorphic to a bad ring in the above sense; or

(iii) A is local and all p-power roots of unity in Frac A belong to A.

If the map K5(A) — Ko(Frac A) is injective then embdim A < 2.
In fact, in case (i), if p € m? then we actually prove that embdim A = 1, i.e. that A is reqular.

Proof. Using corollary 3.20 we see that we may replace A by its completion, which is a reduced,
local Z,-algebra which is finitely generated and torsion-free as a Z,-module. Letting F, = A/m,
example 3.8(iii) says that Z, C A.

(i): Assume first that Frac A, hence g, contains no non-trivial p-power roots of unity. Then
Ky (A; i) = 0, so again using the corollary we deduce that if Ko(A) — Ko (Frac A) is injective then
Ky(A/m"™) = 0 for r > 0; but since Ko(A/m") — Ky(A/m?) is surjective, this would imply that
Ky(A/m?) =0.

Therefore, according to proposition 3.26 below, /\;q m/(m? + pZ,) = 0; i.e.,

dimg, m/(m? 4 pZ,) < 1,

from which (i) and the final claim about p € m? follow.

(ii): Now assume instead that A is seminormal. By standard theory of seminormal rings (we
refer the reader to any of [11, 16, 47, 60] for such standard theory), A has the following description:
if 41, .., qm are the minimal prime ideals of A, and I; := ﬂj# q;, then the maximal ideal of A is
m =1 +---+ I,, and this sum is direct.

We first treat the case m > 2. In this case there clearly exist indices o # f and elements
x € I, y € Ig such that z,y, p are linearly independent in m/m? = I, /I ®--- @ I,,/I%,. Then the
Dennis—Stein symbol (z,y) € K3(A) vanishes in K5(A/q;) for all 4, since each g; contains z or y;
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hence (x,y) vanishes in Ko(A). But (x,y) has non-zero image in Ko(A/m?) by proposition 3.26

and by choice of x,y. This shows that K3(A) — K2(A) cannot be injective when m > 2.
Next suppose that m = 2, so that

A={(f1,f2) € AJTy x A/I, : f mod py = f» mod p, € F,},

where p; denotes the maximal ideal A/I;, which is the ring of integers of a finite extension of Q,.
There are two subcases to consider. Firstly, if the images of p in I;/I? and I5/I3 span neither of
these IF,-spaces, then there exist * € I and y € Iy such that x,y,p are linearly independent in
m/m?, and the same proof as in the case m > 2 works. Secondly suppose that the image of p in
I5/I2 spans this space; this case is trickier. Since I5/12 is the tangent space of the local ring A/,
we deduce that A/I; is both regular and unramified, i.e. A/I; = Z,. Letting O = A/Is, it follows
that A is exactly of type (1) above; so, by our assumption that A is not bad, either O has residue
field Fy, or O contains no non-trivial p-power roots of unity. The second case is covered by (i). In
the first case it is straightforward to check that m is generated by the elements (p, 0), (0, 7), where
7 is a uniformiser of O (c.f. example 3.22 below), whence embdim A < 2. This completes the proof
of part (ii) of the theorem.

(iii): Finally, suppose that A is local and all p-power roots of unity in Frac A belong to A. Let
¢ be a generator of the (possibly trivial) group of p-power roots of unity in A and let A/m =T,
Then A contains O := Z,[¢], which is the ring of integers in Q,(¢). Thus the composition

(©) = K2(O0;Z) — Ka(AZ) — Ko(AZ) = (C)

is an isomorphism. Assuming henceforth that Ks(A) — K3(A) is injective implies, using corollary
3.20, that the second arrow in this composition is injective; therefore the second arrow is actually
an isomorphism and the first arrow is a split surjection.

Hence K3 (0O/p?) — Ko(A/m?) is surjective, where p denotes the maximal ideal of O. Rewriting
these Ko groups in terms of differential forms using lemma 3.24 and applying the standard exact
sequence for differential forms, we see that Q% A/m2)/(0/p?) /d(A/m?) = 0. Finally, from a slight
modification of lemma 3.25, this can be rewritten as

/\; m/(m? +70) = 0,

where 7 is a uniformiser of @. Just as we finished the proof of part (i), this implies embdim A < 2.
O

Example 3.22. Let p > 2 be prime and let ¢ = p! be a power of p. Then A = Z, + p°Z,
is a reduced, local Zp-algebra which is finitely generated and torsion-free as a Z,-module; A has
normalisation Z,, maximal ideal m = pZ, + p°Z,, residue field F,, and embedding dimension
dimp, m/m? =+ 1. Indeed, an F,, basis for m/m? is given by p, p0;, i = 1,...,1, where {6;} are
Teichmiiller lifts of a basis of IF; as a [F-space.

So, assuming that [ # 1, part (i) of the theorem implies that Ks(A) — K2(Z,) is not injective.
However, if | = 1 then dimg, m/(pZ,+m?) = 1 and so Ky(A/m?) = 0, telling us nothing about the
putative injectivity of Ko(A) — K2(Z,). It seems likely that the Dennis-Stein symbol (p, p°61) €
K>(A/m™) will be non-zero for r > 0, which would prove non-injectivity of K2(A) — K2(Z,), but
I cannot prove it.

The theorem required various explicit descriptions of K5(A/m"), especially when r = 2, which
we establish in the remainder of this section by modifying classical results such as those in [36]
and [61]:
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Lemma 3.23. Let R be a ring containing a nilpotent ideal I; let N be the smallest integer for
which IN =0, and assume that N! € R*. Then there is a natural isomorphism

K»(R,I) = HCy(R, ).

Proof. If N = 1 then both sides vanish; assume henceforth that N > 1. So, in particular, 2 is
invertible in R, which implies that HCy, HC; and HC5 may be defined using Connes’ complex
rather than the cyclic bicomplex: see the remark in [35, §2.1]. So the relative group HC}(R,I)
admits the following description: First let C1(R,I) be the submodule of R ®z R generated by
symbols a ® b where at least one of a, b lies in I; then HC;(R, I) is the abelian group obtained by
quotienting C1(R, I) by the relations

ab®c—a®@bc+ca®b=0 (a,b,c € R, at least one in I)
a®b+b®a=0 (a,b € R, at least one in I)

On the other hand, F. Keune [31, Thm. 15] proved that Ko(R, I) admits the following descrip-
tion by Dennis—Stein symbols: It is the abelian group generated by symbols (a,b), where a,b € R
and at least one of a, b lies in I, modulo the relations

(a,b) = —(—b,—a)
{(a,b) + {a,c) = {a,b+ ¢+ abc)
(a,bc)y = (ab, c) + (ac, b)

In the case when R — R/I is split, and with the same hypothesis that N! € R, H. Maazen
and J. Stienstra [36, E.g. 3.12] explicitly constructed an isomorphism

Ka(R,I) = Ker(Qp — Qp/p)/dl = HC\(R,I), (a,b) + I(a,b) da,

where [(X,Y) is a formal logarithm function. Their proof works verbatim in the general situation
when R — R/I is not necessarily split, replacing l(a, b) da by l(a,b) ® a € HCy (R, I). O

Next we pass from the relative groups to the absolute ones:

Lemma 3.24. Let R be a finite ring with Jacobson radical M, and suppose that R/IM is a finite
product of finite fields of characteristic p. Assume that 9MP~1 = 0. Then there is a natural
isomorphism

Ky(R) = QL /dR

Proof. The relative group Ko(R,0M) is a Z,)-module, while K3(R/9M) is a finite group of order
prime to p (thanks to Quillen’s calculation of the K-theory of finite fields); therefore the map
K5(R/M) — Ka(R, M) is zero. Moreover, Ko(R/M) = 0, again because R/ is a finite product
of finite fields, and so we have proved that Ks(R, ) = K»(R).

Now we will prove the analogous result for cyclic homology, which will finish the proof (using
the previous lemma). Notice that it does not matter whether we compute HH and HC with
respect to Z or with respect to the image of Z inside the ring under question; we will freely pass
between the two without indictation. Since R/ is a finite product of finite fields of characteristic
p, it is smooth over I, and QF = 0 for * > 1. The Hochschild-Kostant—Rosenberg theorem
[35, Thm. 3.4.4] and SBI sequence therefore implies that HC2(R/9M) = HCH(R/M) = R/M.
The existence of Teichmiiller lifts easily implies that HCy(R) — HCy(R/9M) is surjective, and
therefore HC3(R) — HCy(R/9M) is surjective. Moreover, HC}(R/9Mt) = 0, completing the proof
that HC1(R, M) = HC1(R) = QL /dR. O
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Next we specialise to the case of a square-zero ideal:

Lemma 3.25. Let R be a ring containing an ideal I such that I?> = 0 and such that 2 € R*.
Assume that the composition H)p(R) — R — R/I is surjective, and let k be any subring of
HY%-(R) which surjects onto R/I. Then there is a natural isomorphism of k-modules

2 ol
/\R/II_QR/dR, aAbr adb,

where I :=1/INk.

Proof. First notice that R = k + I, though not necessarily as a direct sum, and that Q} = Q}%/k,

so we may work with Q}{/k throughout; we will identify Q}{/k/dR with HCF(R) via adb < a ® b,
which has the following presentation: it is the quotient of R ®j R by the k-submodule generated
by

abRc—a®@bc+ca®b=0 (a,b,c € R),
a®b+b®a=0 (a,b € R).

Let A be the k-submodule of /\i R generated by terms a A b where at least one of a, b belongs
to k. We claim that there is an isomorphism

HCER) = (\\ R)/A, a®brand.

It is clear that (/\Z R)/A — Q. /dR, anb — adb is well-defined, thereby defining the isomorphism
in one direction. In the other direction, it is evident that a @ b+ a Ab mod A sends a@b+b®a
to zero, so it remains only to check that

abANe—aAbc+caANb=0 mod A

for all a,b,c € R. Since the identity is linear and symmetric in a, b, ¢ it is sufficient to prove it in
the following two cases:

(i) a € k: Then the identity becomes
abNec—aAbc—abANec=—aANbc=0 mod A.

(ii) a,b,c € I: Then the identity vanishes since I? = 0.

This proves that HCF(R) — (A: R)/A is well-defined, completing the proof of our claimed iso-
morphism.
Finally, it is straightforward to see that the surjection /\i I—( /\i R)/A descends to an iso-

morphism A un, T = (AR R)/A. O

Now we reach the main application of the lemmas; recall from example 3.8(iii) that if a finite
local Zy-algebra has residue field F, then it contains Z,.

Proposition 3.26. Let A be a reduced local Zy-algebra which is finitely generated and torsion-free
as a Zyp-module, with residue field Fy, and assume p > 2. Then there is a natural isomorphism

2\ ~ 2 l
KQ(A/m):/\qu/ma <$,y><—>y/\l'
where m" = m? + pZ,.

Proof. Combine the previous three lemmas, with R = A/m? and k = Z,/Z, N m?. O
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